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Abstract
We consider a model of sequential search in which a decision-maker (DM)

has to choose one alternative from a fixed set. All available alternatives are iid
random variables and ex-ante unknown to the DM. Before making a choice,
contrary to the standard search literature, we allow the DM to decide how
much and what kind of information to acquire about each alternative, e.g., de-
sign different job market interviews for candidates with different arrival ranks.
We find that optimal interviews have an intuitive property – the first arriving
candidates are treated harshly, and their interviews are harder to pass, while
later candidates’ interviews are easier to pass. We compare the unconditional
probabilities of choice and study the discrimination the order of inspection can
cause. We argue that discrimination is sensitive to the functional form of the
cost of learning. We consider several extensions, and we show that it may be
optimal for the DM to interview an inferior candidate first and that a naive
affirmative action policy can increase discrimination.
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1 Introduction
Job market interviews are an integral part of hiring decisions. The usual setting
includes a (female) employer who considers a fixed set of a priori identical (male)
candidates whose suitability for the job is ex ante uncertain. The employer acquires
costly information on the candidates through individual interviews which are con-
ducted sequentially. At any point in time, the employer can stop her search and hire
one of the candidates. The general problem was originally introduced in the semi-
nal paper of Weitzman (1979), and since then it has been known as the “Pandora’s
Boxes Problem". Within this literature, the obvious question is to characterize the
employer’s optimal interviewing strategy.

While different variants have been studied within both Economics and Computer
Science (Beyhaghi and Cai, 2023), not much has been said on the specification
with fully flexible information acquisition technology. This means that the existing
literature exogenously restricts the set of available interviews that the employer can
conduct. While one can imagine that this restriction is innocent in settings where
the interviewing strategy is dictated by some exogenous institution (e.g., whenever
hiring is based on standardized tests), in most applications of interest the interviewer
is free to conduct any interview she deems appropriate. As a result, allowing for
fully flexible information acquisition is not a merely technical extension, but rather
a fundamental aspect of a reasonable model of sequential interviews.

On the other hand, in all fairness to the existing literature, the presence of
exogenous restrictions on the set of feasible interviews is not really surprising given
the complexity of the problem with flexible information acquisition. At the same
time, the developments in the literature of rational inattention have provided us
with new tools that allow us to revisit this problem and provide new insights on the
structure of the optimal interviewing strategy.

Formally, in this paper, the type of each candidate is drawn independently from
the same (Bernoulli) distribution. Of course, the actual types remain unobservable
to the employer. The candidates arrive for interviews sequentially at a fixed or-
der. An interview takes the form of a usual Bayesian signal that is chosen by the
employer. Aligned with the rational inattention literature, the cost of each signal
is posterior-separable (e.g., Caplin et al., 2022; Denti, 2022). Upon observing the
realized signal of an interview, the employer may either reject the candidate and
proceed to the next interview or hire him right away. In this sense, our model main-
tains the no-recall assumption, which is common in many papers in the literature on
Committed Pandora’s Boxes (Beyhaghi and Cai, 2023, Section 2.2) as well as in the
literature on the secretary’s problem (Correa et al., 2021, and references therein).
This assumption is natural in settings where the candidates have outside options
and/or big egos that do not allow them to consider employers that previously re-
jected them. In this sense, it fits well in job markets of highly-skilled/highly-reputed
candidates.

Then, we proceed to characterize the optimal interviewing strategy by reducing
the dynamic information acquisition problem into a static one. Most interestingly,
our result uncovers a special feature of the optimal interviewing strategy. Accord-
ingly, we show that candidates that are interviewed earlier face a “more difficult
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interview", in that the expected quality of an earlier candidate who passes (resp.,
who fails) the test is larger than the expected quality of a later candidate who
passes (resp., who fails) the test. This means that the optimal signals are ranked
with respect to a new stochastic order. Remarkably, this order turns out to have
striking similarities with the likelihood ratio dominance order for lotteries (Shaked
and Shanthikumar, 2007, and references therein) and the information bias order
(Gentzkow et al., 2014; Charness et al., 2021).

The implications of the previous result is twofold. First, the employer has the
luxury to overshoot for very high expected quality in early candidates, as there is still
plenty of candidates to come. At the same time, by having a large expected quality
of a failed early candidate, the employer makes the interview of this early candidate
relatively cheap, thus balancing the risk that she undertakes (via overshooting) and
the information acquisition cost that she has to incur.

From the candidates’ point of view, this strategy induces a tradeoff: early candi-
dates have a lower probability of being hired conditional on being interviewed, but
they also have a higher probability of being interviewed in the first place. Inter-
estingly, it is not the case that one of the two effects always overtakes the other,
meaning that the total probability of being hired is not monotonic with respect to
the order in which candidates are scheduled to be interviewed. Our results shed
light on a possible source of discrimination: primacy (recency) effects, when options
that are presented earlier (later) are more likely to be chosen. We show that both
effects can be present when the manager is rationally inattentive. Results depend
on the non-trivial properties of the cost function of the information acquisition.

Additionally, we consider several simple extensions of our model. First, we relax
iid assumption and show that flexible information technology can generate unex-
pected predictions in the search environment. In particular, if the candidates are a
priori different, it may be optimal for the manager to consider a priori worse can-
didate first. Second, we discuss a naive policy that forbids discrimination in the
interview process: we force the manager to choose the same interview for all can-
didates. We show that such restriction may increase the discrimination that the
sequential search process can cause. Intuitively, in this case, the manager wants to
bear less risk and conduct easier interviews, which always favors the first candidates.

Our results are important for several strands of literature. First, our work should
be primarily seen as part of the literature on Pandora’s Boxes. For an excellent
recent overview of this literature, we refer to Beyhaghi and Cai (2023). Within this
literature, particularly close to our paper is the stream that assumes no recall, known
as the Committed Pandora’s Box Problem. However, as we have already mentioned,
ours is the first paper to consider full flexibility in information acquisition, thus
opening a new avenue of research within this literature.

Second, our work can be seen as part of a broad stream within the dynamic
rational inattention literature that focuses on the timing of information acquisition
(Steiner et al., 2017; Morris and Strack, 2019; Zhong, 2022; Hebert and Woodford,
2023). There is variation in the underlying assumptions that they impose, e.g., some
allowing for flexible information acquisition, some asumming discounting, some con-
sidering continuous time. At the same time, all these papers differ from ours in that
they allow for information acquisition about the entire state space at any point in
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time. In our context this would imply that the employer can potentially interview
multiple candidates at any point in time, and may also invite back candidates for
follow-up interviews. While this assumption certainly makes sense for the applica-
tions that these authors have in mind, it seems less appealing in the job market
setting that we have in mind as our main application.

Third, our paper is incidentally related to the literature on ordering Bayesian
signals, by introducing our difficulty order. Most of the existing literature focuses
on ranking signals with respect to informativeness (Blackwell, 1951). More recently,
in an attempt to model information biases, Gentzkow et al. (2014) introduced a new
partial order which is very similar in various aspects to our difficulty order.

Finally, there is a strand of literature on ordered consumer search, studying dy-
namic information acquisition about different consumption choices before an even-
tual purchase decision is made (for an overview, see Armstrong, 2017). The main
difference to our work is that the focus of this literature is on the role of differ-
ent asymmetries across choices, e.g., which product does the consumer inspect first
when the products differ in price or differ in inspection costs? Similarly to the lit-
erature on Pandora’s Boxes, most of the work on ordered consumer search imposes
strict exogenous assumptions on the information acquisition technology, which at
the outset seems quite natural in the context of the corresponding applications.

2 Model
We study a (female) employer who considers an ordered set of a priori identical
(male) candidates I = {1, . . . , T}. Each candidate i ∈ I is associated with a type

θi ∈ Θ := {Good, Bad} = {G,B},

which is independently drawn from the same distribution that assigns probability
µ ∈ (0, 1) to the good1 type G.

The employer must choose one candidate, and there is no outside option. Before
making a decision, she may acquire information about the candidates’ types. Infor-
mation acquisition is sequential, following the candidates’ order. That is, at stage i,
the employer selects a Blackwell experiment σi : Θ → ∆(Si) for candidate i. Upon
observing a signal realization s ∈ Si, she forms a posterior distribution on Θ, that
we identify with her posterior belief about the state G

pi :=
µσi(s|G)

µσi(s|G) + (1− µ)σi(s|B)
.

It follows from the work of Kamenica and Gentzkow (2011) that each exper-
iment is identified by a mean-preserving distribution of posteriors, i.e., by some
πi ∈ ∆([0, 1]) such that Eπi

(p) = µ. A fully uninformative signal is one that puts
probability 1 to the prior µ.

1The binary type assumption is not essential for our analysis. Our results hold in a more
general setting, more specifically, when the utility of the manager only depends on the beliefs
about posterior means as is typically assumed in the literature of the information design or costly
information acquisition, for example, see Arieli et al. (2023) and Mensch and Malik (2023) for the
recent references. We hold the binary type assumption mainly for the simplicity of the exposition.
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After having updated to belief psi about candidate i, the employer either hires
i or proceeds to interview the next candidate i + 1. We assume no recall, i.e., if
a candidate is not hired right after an interview, he is no longer available to the
employer.2 Thus, the employer chooses an action

ai ∈ Ai := {0, 1}

following the realization of an interview for candidate i, where action 0 corresponds
to not hiring a candidate and 1 – to hiring. Hiring a good candidate brings utility
1 and hiring a bad candidate – 0.

Formally, a non-terminal history at round i ∈ {1, 2, . . . , T} is identified by the
set of realized posteriors for all candidates j ∈ {1, . . . , i− 1}, i.e.,

Hi := [0, 1]i−1.

The employer’s action at every h ∈ Hi, consists of a signal, that leads to a posteriors
πh
i and a mapping αh

i : supp(πh
i ) → Ai. Whenever, pi ∈ supp(πh

i ) is realized and
αh
i (pi) = 1 is chosen, a terminal history is reached, and candidate i is hired. In case

round T is reached, the last candidate will be hired regardless of the realization of
the respective signal. A typical strategy of the employer is henceforth denoted by
(π,α).

Information acquisition is costly. In line with the rational inattention literature
we consider posterior separable costs (Caplin et al., 2022): signal πi costs

C(πi) = λEπi
[c(pi)], (1)

where λ ∈ R++ is the marginal cost of information and c : [0, 1] → R is continuous,
strictly convex and smooth on the interior of the unit interval, and C(µ) = 0 (the
cost of fully uninformative signal equals to 0). The most common such specification
is the case when c is the negative Shannon entropy.

If the employer chooses the action (πh
i , α

h
i ) at history h ∈ Hi, her expected payoff

is equal to
Eπh

i

[
αh
i (pi)pi + (1− αh

i (pi))Vi − λc(pi)
]
,

with Vi denoting her maximum net expected payoff in case she continues and in-
terviews candidate i + 1. Note that Vi depends only on the number of remaining
candidates, as the types of the different candidates are drawn independently from the
same probability distribution, and there is no recall possibility. Hence, without loss
of generality, we can restrict attention to Hi-measurable strategies, i.e., to strategies
such that (πh

i , α
h
i ) = (πi, αi) for all h ∈ Hi. This means that the employer’s expected

payoff is simplified to

Eπi

[
αi(pi)pi + (1− αi(pi))Vi − λc(pi)

]
. (2)

2There can be several rationales for such assumption, e.g., it is caused by psychological factors
of the rejected agent (pride, etc.), or of the employer (extreme case of limited memory), or by
conditions on the labor market (other firms immediately hire rejected candidate).
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Definition 1. The full dynamic problem of the manager is to find (π,α) such that

(π,α) ∈
(
arg max

(πi,αi)
Eπi

[
αi(pi)pi + (1− αi(pi))Vi − λc(pi)

])
s.t. (3)

Vi = max
(πi+1,αi+1)

Eπi+1

[
αi+1(pi+1)pi+1 + (1− αi+1(pi+1))Vi+1 − λc(pi+1)

]
, (4)

VT = 0. (5)

Constraint (4) ensures dynamic consistency, that is DM behaves optimally in
every history. Constraint (5) captures the intuition that if the final candidate is
indeed reached, it implies that the DM has rejected all candidates before. In that
case DM rejects all candidates and ends up with zero payoff.

3 Optimal interviewing strategy
The optimal strategy (π,α) in problem (3) is the collection of the optimal actions
(πi, αi) for all i ∈ I. Note that the interview design problems at some stages i, j
differ only by their continuation values Vi, Vj. Therefore, in the dynamic problem,
the employer behaves as if she solves a collection of static problems with different
continuation values. These continuation values are determined from the future be-
havior of the employer, and the value is exogenous at stage i. Thus, at stage i, a
continuation value Vi serves the role of an outside option to the employer. There-
fore, we conclude that at each stage i, the employer solves a static problem with an
exogenous outside option. A static problem with an exogenous outside option is a
building block for the dynamic problem, and we discuss a static problem in great
detail in this section.3

Additionally, we observe that at stage i given the realized value pi the employer
simply selects candidate i if pi ≥ Vi and continues search otherwise, and therefore in
our previously-stated optimization problem we can replace αi(pi)pi + (1− αi(pi))Vi

with max{pi, Vi}. Thus, the optimization problem at stage i boils down to the
following (static) optimization problem with parameter V := Vi.

Definition 2. The static problem (or the problem with exogenous outside option) is

max
π

Eπ

[
max{p, V } − λc(p)︸ ︷︷ ︸

ϕ(p,V,λ)

]
. (6)

In the analysis we only consider the scenarios when the employer’s learning
strategy is interior, that is, the domain of her optimal signal π does not include 0
and 1. For that, we use mild boundary conditions for the cost function that are
trivially satisfied, for example, when c is negative entropy.

3Such a problem is a variant of the problem of a rationally inattentive agent with an exogenous
outside option, see, e.g., Matějka and McKay (2015), Caplin and Dean (2013) for the reference.
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Assumption 1.

lim
p→0−

c′(p) < c′(µ)− 1

λ
,

lim
p→1−

c′(p) > c′(µ) +
1

λ

We discuss properties of the static problem using two technical lemmas. The
first lemma characterizes the solution exploiting the convexity and differentiability
of the function c(p).

Lemma 1. Let the function c satisfy Assumption 1, then the following statements
hold:

1. The solution to problem (6) exists and is unique.

2. There exist two thresholds VL, VH ∈ (0, 1) with VL < µ < VH , such that the
optimal signal πV satisfies:

V ≤ VL ⇒ supp(πV ) = {µ},
VL < V < VH ⇒ supp(πV ) = {pLV , pHV },
V ≥ VH ⇒ supp(πV ) = {µ}.

3. The optimal hiring decision is given by the following:

V ≤ VL ⇒ α(µ) = 1,

VL < V < VH and p = pHV ⇒ α(p) = 1,

VL < V < VH and p = pLV ⇒ α(p) = 0,

V ≥ VH ⇒ α(µ) = 0.

The previous lemma is illustrated in Figure 1 below. The idea is that ϕ(p, V, λ)
consists of two strictly concave parts, with a kink at V . This induces the two
posteriors pLV and pHV , and as the prior lies between these two the employer will
acquire an informative signal that distributes its probability to these two posteriors;
otherwise, she will pick the completely uninformative signal. These posteriors are
obtained, for example, using the concavification technique as in Caplin and Dean
(2013).4

The key observation is that both pLV and pHV are continuously increasing in V
(see Lemma A3 in the Appendix for a formal proof). Moreover, we have

lim
V→0+

pLV = lim
V→0+

pHV = 0 and lim
V→1−

pLV = lim
V→1−

pHV = 1.

Hence, for sufficiently large V , the whole interval [pLV , pHV ] will lie to the right of µ.
Likewise for sufficiently small V , the interval will lie to the left of µ. Thus, we can
define the two thresholds:

VH := min{V ∈ [0, 1] : pLV ≥ µ},
VL := max{V ∈ [0, 1] : pHV ≤ µ}.

4For recent use of concavification to the related rationally inattentive problems, see, e.g., Jain
and Whitmeyer (2021), Kim et al. (2022).
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ϕ(p, V, λ)

0 1pLV pHVV µ p

Figure 1: The employer’s static payoff function and its concavification when V ∈
(VL, VH).

Note that by the prior µ ∈ (0, 1) being full-support, we obtain both VL ∈ (0, 1) and
VH ∈ (0, 1).

In the dynamic problem of the employer, an outside option at stage i equals
the value of the problem at stage i + 1. In its turn, this value equals the maximal
attained value in a static problem (6) for a particular value of outside option V .
To study the maximal attained value in static problem we define a value function
g : [0, 1] → [0, 1] such that

g(V ) = max
π

Eπ

[
ϕ(p, V, λ)

]
.

Function g(V ) is clearly non-decreasing by construction, as ϕ(p, V, λ) is weakly
increasing in V for every p. We note that function g(V ) is linear on [0, VL] and
[VH , 1], viz., we have g(V ) = µ if V ≤ VL and g(V ) = V if V ≥ VH , as in either of
these two regions the employer does not incur any costs for acquiring information,
and makes a hiring decision straight away. The following lemma completes the
analysis for the entire unit interval.

Lemma 2. The function g is strictly increasing, convex and differentiable every-
where in [0, 1].

We will now proceed to characterize the solution to the dynamic problem. To
do so, we first define a specific sequence of static problems, by means of a sequence
of outside options, viz., for each i ∈ {1, . . . , T}, we have

Vi := g(Vi−1), (7)

with VT = 0.

Lemma 3. For the sequence (Vi)
T
i=1 defined in (7), the following statements hold:

1. The outside option Vi is strictly decreasing in i.
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VL VH
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VH

µ

g

V4

V3

V2

V1

Figure 2: The sequence of outside options with four candidates.

2. For every i ∈ {1, . . . , T − 1}, we have VL < Vi < VH .

Let us illustrate Lemma 3 graphically (Figure 2). First of all, by combining
convexity and differentiability of g with the fact that g(V ) = V for all V ≥ VH , it
follows that g(V ) > V for all V < VH . Hence, Vi keeps shrinking as the employer
moves to later candidates. This is not surprising, as there are fewer candidates left
to interview. The fact that for all candidates except the last one the outside option
lies always in the learning region (VL, VH) holds similarly.

Theorem 1. The solution to the dynamic problem of Definition 1 is as follows:

1. At every round i ∈ {1, . . . , T − 1}, the manager draws the signal πVi
which is

optimal in the static problem (according to Lemma 1), with the outside option
Vi that we defined in (7). Moreover, we have:

(a) If pHVi
is realized, the search stops and candidate i is hired.

(b) If pLVi
is realized, the search continues to candidate i+ 1.

2. At round T , the manager does not acquire information and hires the candidate
right away.

The optimal interview design of the manager in the dynamic problem is very
straightforward: she continues the search until she receives a high signal about the
quality of a candidate. If only low signals have been realized during the first T − 1
interviews, she simply chooses the last candidate with the fully uninformative signal.
We employ the natural interpretation of an optimal interview at stage i as a binary
test. The manager offers a test to a candidate i. If a candidate passes, he is hired; if a
candidate fails, he is discarded. We state our main result about the characterization
of the optimal tests in the next section.
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4 Difficulty of interviews
To compare the different tests that the manager (optimally) chooses for the different
candidates, we introduce the following partial order.

Definition 3. Let πi and and πj be two binary signals, with pLi < pHi and pLj < pHj
being the posteriors beliefs in the respective supports. We say that πi is more difficult
than πj if

pLi > pLj and pHi > pHj .

The condition above has a simple interpretation. The two candidates are ex ante
identical from the point of view of the employer, and they are offered one test each
such that, whenever there is a tie, i is deemed better than j, i.e., in particular,

(a) if both of them pass their respective tests, the expected quality of i is higher
than the expected quality of j, and

(b) if both of them fail their respective tests, the expected quality of i is higher
than the expected quality of j.

Recall that the two signals πi and πj are respectively characterized by the un-
derlying experiments σi and σj (see Section 2).

Definition 4. We say that experiment σi likelihood-ratio dominates experiment σj

whenever, for every signal realization s ∈ {H,L},

σi(s|G)

σi(s|B)
>

σj(s|G)

σj(s|B)
.

The underlying idea is as follows: conditional on every test result, the relative
evidence for the good type is stronger under i’s interview than under j’s interview.
Note that our notion of likelihood ratio dominance bears similarities with the one
that is often used in the literature to compare lotteries (Shaked and Shanthikumar,
2007). A similar relation has been used in the literature on biased information
sources (Gentzkow et al., 2014; Charness et al., 2021). Remarkably, our difficulty
order will be characterized in terms of likelihood ratios.

Proposition 1. The following are equivalent:

(i) Signal πi is more difficult than signal πj.

(ii) Experiment σi likelihood-ratio dominates experiment σj.

(iii) For every prior µ, the passing probability under σi is lower than the passing
probability under σj, i.e.,

µσi(H|G) + (1− µ)σi(H|B)︸ ︷︷ ︸
passing probability under σi

< µσj(H|G) + (1− µ)σj(H|B)︸ ︷︷ ︸
passing probability under σj

.
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From the previous result it follows directly that our notion of more difficult
interview does not depend on the prior. This is a desirable property, satisfied by
other well-known orders over the set of Bayesian experiments. The idea is that
difficulty is a property of the test alone, defined independently of the candidate who
takes the test.

Furthermore, if the two candidates actually share the same prior, i’s interview is
harder than j’s interview if and only if the probability to pass the test is lower for
i than it is for j.

Let us now state our main result which says that, in the optimal interview-
ing strategy, the interviews decrease in difficulty as the employer proceeds to later
candidates.

Theorem 2. In the optimal strategy from Theorem 1, the following hold:

1. Difficulty is decreasing with respect to the order of being interviewed, i.e., for
all i ∈ {1, . . . , T − 2}, signal πVi

is more difficult than signal πVi+1
.

2. As the number of candidates grows large, we obtain:

lim
T→∞

pLV1
= µ and lim

T→∞
pHV1

= VH .

Hence, the probability of the first candidate being hired converges to 0.

In Figure 3, we show an example of an optimal learning strategy. On the vertical
axis we have the number of remaining candidates, besides the one currently inter-
viewed. So for instance, if there are ten candidates in total, we depict the optimal
interviews for the first nine, recalling that the last one will be hired anyway without
an interview.

1

2

3

4

5

6

7

8

9

0 1µ

Figure 3: Optimal interviews as a function of the number of (additional) remaining
candidates.

Decreasing the high posterior realizations pHVi
is intuitive. If a posterior pHVi

is
realized on the interview i, the employer stops the search and chooses candidate
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i. Thus, it makes sense that in order for the employer to stop the search early,
she needs to be sufficiently certain that the candidate she hires is good, as she is
foregoing the chance to interview many other potential candidates.

Decreasing the low posterior realizations pLVi
is less intuitive. By using such

a strategy, the employer optimally procrastinates: instead of acquiring the most
information during the first interviews, she wants to spread expected information
acquisition towards all interviews. Intuitively, during the first interviews, she offers
hard tests for the applicants because she has some applicants that are left. The
employer wants to bear the risk and try to “catch a big fish" at the beginning. The
fewer candidates are left, the safer the strategy used by the employer is.

Additionally, we describe the dynamics of the optimal interviews in terms of the
statistical errors that the employer makes. We consider type I and type II errors as
the probability of hiring a bad candidate, and as the probability of rejecting a good
candidate, respectively. Combining results from Theorem 2 and Proposition 1, we
obtain that in the optimum, the sequence of type I errors decreases in i, and the
sequence of type II errors increases in i. At the first stages, the employer bears the
risks, offers the hardest tests, and tolerates the false negatives, whereas in the later
stages she plays safer, decreasing the probability of false negatives and increasing
the probability of false positives.

5 Discrimination
From Theorem 2, we know that the optimal interviews are more difficult for earlier
candidates: conditional on being interviewed, later candidates get an easier test
than earlier ones. However, from Theorem 1, we know that the probability that a
candidate is interviewed at all is lower than that of his predecessors, since it depends
on those candidates failing their interviews. The aggregate effect is unclear. In
this section, we ask which effect dominates, that is, what can we say about the
unconditional probability of a candidate being hired? We show that the answer to
this question is sensitive to assumptions on the cost function, c, the marginal cost λ,
and the prior belief µ. In what follows, we first focus on the case of two candidates
and provide sufficient conditions under which the first or the second candidate may
be discriminated against. These conditions are general enough to incorporate some
commonly used cost functions such as entropy and quadratic forms. Finally, we
evaluate the choice probabilities for a general T assuming quadratic costs.

Denote by qiT the unconditional probability of candidate i being accepted from
a pool of T candidates. An interview design is discriminatory if these choice prob-
abilities are not uniform even though candidates are a priori identical. The only
difference in the candidates, insofar as the employer is concerned, is their relative
position in the interview.

5.1 Two candidates

In order to make the problem tractable, we make certain assumptions on the cost
function. We first define symmetric cost functions.
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Definition 5. c is said to be symmetric about a point z ∈ (0, 1) if for any pair
p, q ∈ [0, 1]

|z − p| = |z − q| =⇒ c(p) = c(q)

Note here that the point of symmetry, z may depend on the prior as in quadratic
functions or may be independent of the prior as is the case of entropy. For example,
for the quadratic cost function c(p) = (p − µ)2 the axis of symmetry is z = µ, for
the entropic cost c(p) = p log p + (1 − p) log(1 − p) the axis of symmetry is z = 1

2
.

We denote the subset of posterior separable and symmetric cost functions by Cs.
Moreover, we assume that:

Assumption 2. c belongs to either of the two following families:

C1 =
{
c ∈ Cs

∣∣ c′ is concave on (0, z)
}

C2 =
{
c ∈ Cs

∣∣ c′ is convex on (0, z)
}

We say that a candidate 1 is favored if the unconditional probability of hiring
him strictly exceeds 0.5.

Proposition 2. Under Assumption 2, we have:

1. If µ = z or c ∈ C1 ∩ C2, no candidate is favored.

2. If c ∈ C1, there exists an open neighborhood of z denoted by Bz such that
candidate 1 is favored whenever µ ∈ Bz ∩ (z, 1) and candidate 2 is favored
whenever µ ∈ Bz ∩ (0, z).

3. If c ∈ C2, there exists an open neighborhood of z denoted by Bz such that
candidate 1 is favored whenever µ ∈ Bz ∩ (0, z) and candidate 2 is favored
whenever µ ∈ Bz ∩ (z, 1).

Proposition 2 suggests that the probability of choice depends on the parameters
of the model and properties of the cost function in a very nontrivial way, even when
T = 2. In particular, it depends on a combination of the curvature of the first
derivative of c and the prior belief. To get some intuition for the result, we point
out that if µ = z, then the rates of change of the posteriors, pHµ and pLµ , with respect
to µ are identical. Consequently, the comparison between q12 and q22 depends on
the absolute value of the derivative of the high posterior pHµ . In its turn, the latter
depends on the sign of the third derivative of c.

For the case of entropic costs, the closed form solution for the posteriors helps
in arriving at a more global property which is summarized in the following lemma.

Proposition 3. Let c be negative entropy. Then, the first candidate is favored if
and only if µ ∈

(
1
2
, 1
)
.

In that case, the employer favors the first candidate in the lemon-dropping market
(µ > 0.5) and favors the second candidate in the cherry-picking market (µ < 0.5).
Bartoš et al. (2016) find that endogenous attention leads to discrimination when
candidates have different expected productivity. Our result suggests that discrimi-
nation may present if the candidates are ex-ante the same, but the choice problem
is sequential.
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Figure 4: Left : non-monotonicity between q13 and q23. Right : non-monotonicity
between q13 and q33.

5.2 Three or more candidates

In a very special case, when c′(p) is linear, the manager’s behavior does not depend
on the expected productivity of a candidate. We show that such behavior is a general
feature of the problem in this special case. The sequence qiT behavior for a given
T does not depend on the expected productivity µ. In particular, we show in the
Proposition below that qiT is strictly decreasing in i for all i < T − 1. It is better to
be first: the candidates in the beginning have a relative advantage for being hired.

Proposition 4. Let c(p) = (p−µ)2. Then for any fixed T unconditional probability
to choose candidate t, qiT is strictly decreasing in t for all t < T−1 with qT−1T = qTT .

We argue that such a general result about the monotonicity of qtT is very sen-
sitive to the cost specification. Moreover, in general, when T > 2, endogeneity
of the continuation values Vi generates an additional effect on the sequence qiT .
In order to provide examples when non-trivial trade-offs may arise, we present an
analysis for some cases for T = 3 and entropic cost. In particular, we consider
how the probabilities qi3 change with respect to the marginal cost of information
λ. For example, consider the behavior of q13 with respect to λ. We can write that
dq13/dλ = ∂q13/∂λ+ (∂q13/∂V1)× (∂V1/∂λ). In general, the sign of dq13/dλ is am-
biguous: because of the inequality V1 > µ, the inequality ∂q13/∂λ < 0 holds but
also ∂q13/∂V1 × ∂V1/λ > 0 holds because both terms in the product are negative.

On Figure 4, we provide examples of non-monotonic behavior of choice proba-
bilities qiT . Moreover, we show that the order of probabilities also may change with
respect to λ. On the left figure, we consider the case with small ex-ante productiv-
ity µ = 0.14. If information is almost free, the inequality q13 > q23 clearly holds,
because 0.15 > 0.85 × 0.15 holds. For greater values of λ, the first interview is be-
coming easier to pass and, therefore, q13 increases. However, q23 also increases and,
moreover, q23 > q13 that suggests that because the information becomes getting
expensive, the employer simplifies the second interview even more. If λ becomes
larger, the inequality q13 > q23 again holds, suggesting that the employer chooses a
more similar level of difficulty on the first and the second interviews.
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On the right figure, we consider the case with µ = 0.39. Contrary to the previous
example, if the information becomes slightly expensive, q13 decreases. For some
values of λ, the first interview becomes relatively hard because the function q13 is
steep. This effect leads to the inequality q33 > q13. However, when the information
becomes expensive, the first interview becomes easier, and inequality q13 > q33 starts
to hold again.

If λ becomes large, the behavior of the sequence qi3 becomes monotonic irrespec-
tively of the value of µ. Next proposition states the result that is similar to the
Proposition 4 for the entropic cost when the marginal cost of information is very
large.

Proposition 5. Consider T = 3 and assume the entropic cost of information. If λ
goes to ∞ then q13 converges to 3

8
, and both q23, q33 converge to 5

16
.

The Proposition 5 has the following interpretation in terms of discrimination.

Corollary 1. In the setup of Proposition 5 for any µ ∈ (0, 1) there exists such λµ

that if λ > λµ, then q13 > q23 and q13 > q33.

Proposition 5 and Corollary 1 suggest that if information becomes expensive, it
is better to be first. Perhaps surprisingly, the probabilities of choice are not uniform
in the limit. Even if the information is very expensive, the employer learns during
the first and the second interviews and chooses the first candidate with the highest
probability. We leave the investigation of the behavior of sequence qiT for larger
values of T and nonquadratic cost for future research.

6 Different productivities
Throughout the text, we assumed that our candidates were identically and indepen-
dently distributed. Although that may seem a substantial simplifying assumption,
that assumption captures our initial motivation to investigate the role of endogenous
information in the sequential dynamic problem. By independence, we shut down the
learning motive that will generate an additional incentive to acquire the informa-
tion at the first stages. The same distribution assumption allows us to isolate the
sequential role of the decision. This assumption is less restrictive in its nature, and
we relax it in this Section.

Our analysis are a reduced comparative statics exercise with respect to the prior
belief about a candidate’s productivity. In particular, we consider the situation in
which one of the candidates is ex-ante marginally better than others. We investi-
gate how such a perturbation influences the optimal structure of the interviews and
comment on how it may impact discrimination. When the candidates have different
expected qualities, the manager has an additional control variable – the optimal
order of candidates. We analyze such a problem for the case with two available can-
didates at the end of the Section. Information about the expected qualities is public
knowledge, and the optimal behavior of the manager generates incentives for the
candidates to take particular interview slots. Therefore, the complete and careful
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investigation should reflect the candidates’ responses on the optimal interview de-
sign and include the game-theoretic analysis. Such an analysis is beyond the scope
of the current paper and the natural direction for future research.

We start with the scenario in which one of the candidates is better than the
others. The case in which a candidate is worse can be analyzed identically. We
assume that there is a candidate i′ such that µi′ > µ, where µi = µ for all i ̸= i′.
We focus on a situation where the candidate i′ is marginally better than others,
µi′ ≈ µi+ε. In particular, such an assumption guarantees that the manager acquires
information if she reaches any period i < T . For now, we assume that the order of
the candidates is given, and the manager must interview the ex-ante best candidate
at stage i′. We restrict our attention to uniformly posterior-separable cost functions
in order to isolate effects of cheaper (more expensive) information about different
candidates, i.e., c does not depend on µ in order to maintain the same information
technology for all the candidates. The next Proposition identifies how the optimal
structure of the interviews changes in this case.

Proposition 6. Fix T and let exist i′ ≤ T such that µi′ > µi for all i′ ̸= i and
µi = µ for other i. Assume that if the manager reaches the period i < T , she
acquires information. Solution to dynamic problem (1) changes as follows:

1. DM increases the difficulties of any interview i such that i < i′

2. DM does not change any interview i such that i ≥ i′.

Proposition 6 confirms the basic intuition about the role of the difficulty in the
solution to the employer’s problem. Because of non-recall property, a candidate
i′ makes no difference for the employer’s problem for i > i′. The employer also
chooses the same posterior beliefs interviewing the candidate i′ – this is a stan-
dard property of the solution of the rational inattention problem with a uniformly
posterior-separable cost function. However, the employer changes her behavior in
all interviews i such that i < i′. Intuitively, she can risk more at the earlier stages
because she expects a better candidate later. The employer chooses the harder inter-
views at the beginning, lowering the probability of success. However, if a candidate
passes the interview, the employer hires, on average, a better candidate.

Although an inclusion of a better candidate has clear effect on the structure of
the optimal solution, the impact on the unconditional probabilities of choice and,
therefore, on the discrimination is generally unclear except some very special cases.
Such an example is i′ = 1. In this case, obviously, each qiT for i ≥ 2 is decreased by
the same factor, and the sequence of qiT has the same order in terms of inequalities.
Below, we present two numerical examples in which the inclusion of the better
candidates generates non-trivial spillover effects on the unconditional probabilities
of choice and, hence, on discrimination.
Example 1. We consider the case T = 3 and i′ = 3. In this case, both the first and
the second interviews become harder. Therefore, the value q13 decreases. However,
the behavior of the q23 is generally unclear. Although the probability of passing
the interview for the second agent decreases, the employer interviews this candidate
more often. Thus, in principle, the inclusion of the better rival may increase the
chance of the candidate to be hired. Such a situation happens, for example, if the
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employer has the entropic cost of information and µ3 = 0.61, µ = 0.6, λ = 0.1. That
is, in this case, the change in the expected productivity of the third agent from 0.6
to 0.61 increases q23.
Example 2. Yet another non-trivial impact of the inclusion of the better candidate
is the effect on discrimination. We again consider the case T = 3 and i′ = 3 in which
the employer has an entropic cost. If µ3 = µ = 0.1, λ = 0.4 then the inequality
q33 > q23 > q13 holds. The employer chooses the first candidate the least often.
However, if µ3 = 0.11, the sign of the inequality changes. Both the first and the
second interviews become harder, and for such parameters, both probabilities q13, q23
decrease. However, these probabilities decrease disproportionally and the inequality
q33 > q13 > q23 holds. Therefore, the employer chooses the second candidate the
least often in this case.

Another interesting observation concerns qi′T , the unconditional probability of
choosing the best ex-ante candidate. Although candidate i′ is ex-ante the best, the
employer may not choose him with the highest probability. Consider, for example,
the case as in Section 5 in which µi = µ for all i and the sequence qiT is decreasing in
i. By the continuity argument, if µT marginally increases, the sequence qiT will still
be monotone in i. Therefore, the employer will choose the best ex-ante candidate
with the lowest probability. The dynamic effect dominates in the solution. The
employer tries to save on the cost of information in the later stages and chooses
worse candidates more often. Intuitively, this situation occurs because the employer
can not control the order of inspection. In the following Proposition, we show that
it is indeed the case. If the order of inspection is endogenous, the employer chooses
the better agent more often. We state our result for the case T = 2.

Proposition 7. Let function c(p) belong to the class C1 from Assumption 2. Let
T = 2 and suppose that candidate i is marginally better than the candidate j: µi ≈
µj + ε. Let the employer solve Problem (1) and let her also choose the order of
candidates. Then

1. If µj = z then the employer is indifferent in the order of candidates.

2. If µj > z then the employer interviews agent i the first and agent j the second.

3. If µj < z then the employer interviews agent j the first and agent i the second.

In all cases inequality qiT > qjT holds.

If the employer can choose the inspection order, she does it efficiently. Recall,
that from Proposition 2 the inequality between q12 and q22 depends on the value of
µ. Similarly, the employer decides whom to interview depending on the value of µj.
In the «lemon-dropping» market, the employer interviews the better candidate; in
the «cherry-picking» market, she interviews the worse candidate. In both cases, the
optimal order increases the probability of hiring an ex-ante better candidate. Thus,
similarly to the recent paper by Fosgerau et al. (2023), endogenous information
amplifies the effect of the ex-ante differences in our model.

Interestingly, the results for the two candidates case suggests that the employer
may want to start the search with the worst candidate and leave better candidates
for later stages. This finding is a striking difference from results in the classical
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search literature, e.g., Weitzman (1979). In those models with restricted informa-
tion structures DM always starts the search with the most promising alternative.
Inspection of the worst candidate first can be a part of the solution in a more general
model. For example, Doval (2018) finds such behavior in a version of the Pandora
box model in which DM can choose an item without inspection. We provide another
justification for such a finding based on the endogenous information channel.

7 Restricted interview design
At the optimum, the employer in our model fully leverages the flexibility of the
interview design. She constructs different interviews depending on the serial position
of a candidate. Utilizing the dynamic structure of the problem, the manager offers
more difficult tests to the candidates who are arriving early. Such a difference in the
treatment can create discrimination in the hiring outcomes, as discussed in Sections
5, 6, and may be seen as unfair. In this Section, we reduce the manager’s power
and restrict the feasible set of interviews. We consider the scenario in which the
manager has to offer an interview of the same difficulty for all candidates.

We employ two interpretations of our restricted setting. In the first interpre-
tation, the authority may ask an employer to design identical interviews for all
candidates. We refer to this interpretation as the structured interview in the hiring
process. A structured interview is usually understood as a series of predetermined
questions the interviewer addresses to the applicants, evaluating their responses by
a standardized procedure. In their guide to conducting a fair selection process, the
National Institutes of Health, the primary agency of the United States government,
suggests that using a structured interview reduces bias in the hiring procedure.5
However, it is possible that such a recommendation is not directly applicable, for
example, if tests become publicly available or if there is a possibility of informa-
tion sharing between applicants, the authority may ask to design tests that are not
identical, but have the same level of difficulty for all the candidates.

In this Section we consider a simplified version of the restricted interview de-
sign. The possible issue is that employer in the restricted case might be tempted to
design similar interviews for the candidates but to take into account time of arrival
for her hiring decisions. To counteract this, we assume that all candidates must
have the same expected productivity level conditional on the employer’s action. In-
dependently from their serial numbers, rejected candidates have to have the same
expected productivity. An acceptance belief also does not depend on the interview
step.6 Additionally, the procedure guarantees that, at the optimum, the manager
chooses at most two posterior realizations. We formulate the restricted manager’s
problem as a restricted version of problem (1).

5Manager’s Fair Selection Toolkit. Office of Equity, Diversity, and Inclusion, National
Institutes of Health. https://www.edi.nih.gov/sites/default/files/public/EDI_Public_
files/guidance/toolkits/managers/manager-fair-selection-toolkit01.pdf

6In order to not put our employer in risk of not hiring anyone, we assume that the last arriving
candidate can be hired without interview.
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Definition 6. The restricted dynamic employer’s problem is to find (π, α) such that

(π, α) ∈
(
arg max

(πsupp|π|≤2,α)
Eπ

[
α(pi)pi + (1− α(pi))Vi − λc(pi)

])
s.t.

(8)

Vi = Eπ

[
α(pi+1)pi+1 + (1− α(pi+1))Vi+1 − λc(pi+1)

]
,

VT−1 = µ,

VT = 0.

We emphasize two differences between the restricted and the unrestricted prob-
lems. First, in the restricted problem, the employer chooses a posterior distribution
only once. Therefore, we omit index i. Additionally, there is a restriction on the
cardinality of the support of the posterior distribution.7

It is convenient to analyze the restricted problem (8) explicitly using the un-
conditional choice probabilities. The restricted problem is a special case of a static
problem (2) with corresponding outside option. In Appendix B we reformulate the
static problem (2) as an equivalent problem, in which maximization is over the un-
conditional choice probabilities only, and show that there is one-to-one mapping
between unconditional choice probability and the optimal posteriors. Analogous
analysis can be found in a recent paper by Fosgerau et al. (2023) and is similar
to the expressing discrete static rational inattention problem as the log-sum as in
Matějka and McKay (2015), Caplin et al. (2019).

Next proposition is our main result for this Section and it compares the solutions
of the restricted and unrestricted problems.

Proposition 8. Let q∗ and q1T be the optimal probability of hiring the first arriving
candidate in the restricted and unrestricted problems with T candidates respectively.
When T > 2, the inequality q12 > q∗ > q1T holds.

Proposition 8 identifies that in the restricted problem, employer chooses a test
with intermediate difficulty: the test is easier than the hardest one, which is offered
to the first candidate, and is harder than the easiest one, which is offered to the last
interviewed candidate. Recall that the employer engages in more risky behavior in
the unrestricted setting in the earlier stages. She chooses a test with a low probability
of success because she can mitigate the failure in the future stages. Restriction on the
interview design forbids such mitigation. The results in Proposition 8 are intuitive
and naturally fit into the risk interpretation: the manager bears less risk in the
earlier stages.

It is immediate from Proposition 8 that the restriction on interviews increases
and decreases the probabilities of hiring the first and the last interviewed candidates,
respectively. How does the restriction influence the chances of other candidates

7If the support of posterior distribution is not bounded, it is generally unclear whether Lemma
1 holds in the restricted setting. For example, anticipating the lack of choice in the following
periods, DM may leverage her flexibility in the first period and design a test with more than two
realizations. This strategy may allow the optimal dynamic behavior to be squeezed into a single
test. Such a more general problem is out of this project’s scope and is a natural direction for future
research.
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being hired is generally unclear. Consider the natural goal of the authority: make
probabilities of being hired not depend on the serial number of a candidate and,
therefore, be equal to each other. A combination of the results from Proposition 8
with the analysis in Section 5 suggests that the policy introduced in this Section
may increase discrimination that appears in the unrestricted problem. For example,
it happens if the sequence qiT decreases in i. The ideal policy must take into account
the intertemporal incentives of the manager and not naively put a simple restriction
on the feasible set of strategies.

8 Conclusion
As documented in the economic literature, see, e.g., Bertheau et al. (2023), hiring
is difficult for firms, and one of the reasons is that the firms face time constraints
while hiring candidates. This means that firms do not learn the potential workers’
productivities perfectly (since it will take too long time) but instead acquire noisy
information about those. In this paper, we model the process of sequential search
with costly but flexible learning in each stage.

The hiring firm observes several candidates who arrive sequentially and can de-
sign interviews for each candidate individually. We show that the optimal learning
strategy has a simple feature – the later the candidate appears (the higher the se-
rial number she has), the easier questions she will be facing. That is, the optimal
interviews are decreasing in their difficulty in time. However, it does not mean that
the workers should try to be interviewed in the end since the probability of being
hired as a function of time of arrival is not necessarily increasing.

Our paper is the first step in studying sequential search with flexible and en-
dogenous information acquisition. Therefore, many research questions are left for
the future. For instance, we study only the situation in which the candidates are
ex-ante identical, and the order of their arrival is random. The problem of studying
a similar problem with a priori heterogeneity in workers’ productivities and choice
of order of the candidates is interesting and intriguing.

Another suggestion for future research is to consider a model similar to ours but
with an opportunity for recall. We suspect that the decreasing difficulty property
will remain present in this class of problems.
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A Proofs

A.1 Intermediate results

Lemma A1. Under Assumption 1, pLV , pHV ∈ (0, 1).

Proof. Assume the contrary. Let Assumption 1 be satisfied. Let for a given V
the employer chooses the optimal signal π with the pair of posterior beliefs pLV , p

H
V

such that at least one of them belongs to the boundary {0, 1} and In this case, the
inequality between slopes

1− λc′(pHV ) > −λc′(pLV )

holds. If pLV = 0 then by Assumption 1 inequalities

1− λc′(pHV ) > −λ lim
p→0+

c′(p) > 1− λc′(µ)

hold and, therefore, because c is convex, inequality µ > pHV holds. If pHV = 1 then
by Assumption 1 inequalities

−λc′(pLV ) < 1− λ lim
p→1−

c′(p) < −λc′(µ)

hold and, therefore, because c is convex, inequality µ < pLV holds. In both cases, the
Bayesian consistency condition for π is violated.

Lemma A2. Both pLV and pHV are differentiable with respect to V in (VL, VH).

Proof. Under Lemma 1, the concave closure of ϕ as defined in the static problem
(2) for p ∈ [pLV , p

H
V ] is a straight line that is tangent to ϕ at pLV and pHV . This tangent

is characterized by the following equality for p ∈ [pLV , p
H
V ]

V − λc(pLV )− λc′(pLV )(p− pLV ) = pHV − λc(pHV )− [λc′(pHV )− 1](p− pHV ) (A.1)

such that

λc′(pLV ) = λc′(pHV )− 1 (A.2)

By virtue of strict convexity of c and (A.2), we can implicitly define pHV as a
continuously differentiable function of pLV . Using this in (A.1), we have that

V = pHV − λc(phV )− [λc′(phV )− 1](p− phV )− [−λc(pLV )− λc′(pLV )(p− pLV ] (A.3)

Using (A.2) yields:

0 = −V + pHV − λc(pHV ) + λc(pLV ) + λc′(pLV )(p
H
V − pLV ) (A.4)

Next, note that the RHS is a continuously differentiable function of pLV . Moreover
its derivative with respect to pLV is given by:

(1− λc′(pHV )) · (pHV )′ + λc′(pLV ) + λc′(pLV ) · (pHV )′ − λc′(pLV ) + λc′′(pLV )(p
H
V − pLV )

= λc′′(pLV )(p
H
V − pLV ) > 0

where the last equality comes from (A.2). The implicit function theorem implies
that pLV is a continuously differentiable function of V and consequently so is pHV .
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Lemma A3. Both pLV and pHV are increasing with respect to V in (VL, VH).

Proof. Differentiating tangent optimality conditions (A.2),(A.4) with respect to V
gives the system 

∂pLV
∂V̄

= 1
λc′′(pLV )(pHV −pLV )

∂pHV
∂V

= 1
λc′′(pHV )(pHV −pLV )

,
(A.5)

By the convexity of c and because inequality pHV > pLV holds, both derivative are
positive.

A.2 Proof of Lemma 2

For every V ∈ (VL, VH), the optimal signal πV assigns to the two respective poste-
riors, pLV and pHV , probability

πV (p
L
V ) =

pHV − µ

pHV − pLV
and πV (p

H
V ) =

µ− pLV
pHV − pLV

,

and the employer’s indirect expected utility in (VL, VH) is

g(V ) = πV (p
H
V )
(
pHV − λc(pHV )

)
+ πV (p

L
V )
(
V − λc(pLV )

)
.

Since pLV and pHV are differentiable in V , so is g. By the Envelope Theorem, we have

g′(V ) = πV (p
L
V ) > 0.

Thus, g is strictly increasing in (VL, VH). Then, simple algebra yields

∂πV (p
L
V )

∂V
=

∂pHV
∂V

(µ− pLV ) +
∂pLV
∂V

(pHV − µ),

which, by Lemma A3, is non-negative. Therefore, g is convex.

A.3 Proof of Lemma 3

Part 1 follows directly from (7) combined with Lemma 2.
By definition we have VT = 0. Then, Part 2 follows directly from the fact that
g(V ) ∈ (VL, VH) for all V ∈ [0, VH).

A.4 Proof of Theorem 1

The proof follows directly from from Lemmas 1 and 3.
In particular, by VT = 0, we get VT < VL. Hence, supp(πVT

) = {µ} and αT (µ) = 1.
Moreover, for every i ∈ {1, . . . , T − 1}, we have VL < Vi < VH , and therefore
supp(πVi

) = {pLVi
, pHVi

} with αi(p
L
Vi
) = 0 and αi(p

H
Vi
) = 1.
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A.5 Proof of Theorem 2

For the first part, it is sufficient to show that both optimal posterior beliefs in the
static problem (6) or increasing functions of the outside option. It follows from the
proof of Lemma 2.

From Proposition 1 and Lemma 1 continuation value V1 converges to VH when
T → ∞. In the solution to problem (6) with an outside option VH , the solution
to the first-order conditions from Lemma 1 implies that the lower optimal posterior
equals the prior. Therefore, by the continuity lim

T→∞
pLV1

= µ holds and the high
posterior belief converges to VH .

A.6 Proof of Proposition 1

(i) ⇐⇒ (ii): For each s ∈ {H,L}, we have:

psi =
µ

µ+ (1− µ) σi(s|B)
σi(s|G)

> psi =
µ

µ+ (1− µ)
σj(s|B)

σj(s|G)

⇐⇒ σi(s | G)

σi(s | B)
>

σj(s | G)

σj(s | B)

(i) ⇒ (iii): By the Bayes rule the passing probability under test k equals to (µ −
pLk )/(p

H
k − pLk ). The required follows from the inequalities

µ− pLj
pHj − pLj

>
µ− pLj
pHi − pLj

<
µ− pLi
pHi − pLi

.

(iii) ⇒ (i): Let the passing probability under test i is lower than under test j,
but signal πi is not more difficult than πj. In this case at least one inequality
pHj ≥ pHi , p

L
j ≥ pLi holds. In the first case for a candidate µ = pHi and in the second

case for a candidate µ = pLj the passing probability of test i is higher. Thus, the
signal πi has to be more difficult than πj.

A.7 Proof of Proposition 2

First, he symmetry of c implies that c′(z) = 0. Boundary assumption 1 garanties
existence of the point p′ ∈ (z, 1) such that equality c′(p′) = 1

2λ
holds. The pair

of points (pLµ , p
H
µ ) = (p′, p′′), where p′′ = 2z − p′ is the solution to the optimality

conditions (A.2, A.4) for the optimal posterior beliefs with an outside option V = z.
If T = 2 then V = µ holds and, therefore, if µ = z holds then a pair (p′, p′′) is a pair
of optimal posterior beliefs. Rearranging the optimality condition A.4) gives

pHµ − µ

pHµ − pLµ
=

1

2
,

thus q12 = q22.
Second, we calculate the derivative of q22 with respect to the outside option, that

in the case T = 2 equals to µ

dq22
dµ

=
( pHµ − µ

pHµ − pLµ

)′
µ
=

((pHµ )
′ − 1)(pHµ − pLµ)− (pHµ − µ)((pHµ )

′ − (pLµ)
′)

(pH − pL)2
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Optimal posteriors pHµ and pLµ are symmetric around z, therefore, equality (pHµ )
′ =

(pLµ)
′ holds, and the sign of the derivative is determined by the fact whether (pHµ )′ is

larger than 1. We substitute the expression for (pHµ )′ using conditions from Lemma
A.5:

(pHµ )
′ − 1 =

1

λc′′(xH)(pHµ − pLµ)
− 1 =

c′(pHµ )− c′(pLµ)

c′′(pHµ )(p
H
µ − pLµ)

− 1 =

=
1

c′′(pHµ )(p
H
µ − pLµ)

(
c′(pHµ )− c′(z)− c′′(pHµ )(p

H
µ − z)+

+
(
c′(z)− c′(pLµ)− c′′(pLµ)(z − pLµ)

))
(A.6)

where we substitute optimality conditions for λ and use equality c′′(pLµ) = c′′(pHµ ).
Once we assume the behavior of c(p) on (z, 1), the symmetry assumption of

function c(p) pins down the behavior on of c(p) on (0, z). In particular, of c(p) is
linear on (z, 1) then c(p) is linear on (0, z); if c(p) is convex on (z, 1) then c(p) is
concave on (0, z); if c(p) is concave on (z, 1) then c(p) is convex on (0, z). Therefore,
if c(p) is linear on (z, 1), then both terms in the brackets expression (A.6) equal to
0 and q12 = q22. If c(p) is convex on (z, 1), then by the intermediate value theorem
both terms in the brackets expression (A.6) are negative and q12 > q22 if µ ≈ z + ε.
If c(p) is concave on (z, 1), then by the intermediate value theorem both terms in
the brackets expression (A.6) are positive and q12 > q22 if µ ≈ z + ε.

A.8 Proof of Proposition 3

If T = 2 then the Bayes rule implies that the first candidate is favored if pHµ + pHµ <
0.5. If c is negative entropy, then the low and high posteriors are given by:

pLµ =
e

µ
λ − 1

e
1
λ − 1

pHµ =
e

1
λ − e

1−µ
λ

e
1
λ − 1

Note that the function pHµ + pLµ is strictly increasing in µ. Moreover, it is concave
for µ ∈

(
0, 1

2

)
and convex on µ ∈

(
1
2
, 1
)
. Finally, it intersects the function 2µ at{

0, 1
2
, 1
}
. Consequently, it lies strictly above 2µ for µ ∈

(
0, 1

2

)
and strictly below 2µ

for µ ∈
(
1
2
, 1
)
.

A.9 Proof of Proposition 4

Simple algebra shows that the system has unique solution pLV = V − 1
4λ
, pHV = V + 1

4λ
.

Substituting the solution gives the value of the problem as g(V ) = V +λ(µ−V + 1
4λ
)2.

We show that for a given T > 2 inequality q1T > q2T holds. Using the derived
expressions above we get that

q1T = 2λ
(
µ− V1 +

1

4λ

)
; q2T = 4λ2

(
V1 − µ+

1

4λ

)(
µ− V2 +

1

4λ

)
,
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moreover equality

V1 = V2 + λ
(
µ− V2 +

1

4λ

)2
holds. We denote t = µ− V2 +

1
4λ

, thus,

q1T = 2λ(t− λt2)

q2T = 4λ2t
( 1

2λ
− t+ λt2

)
Therefore, the inequality q1T > q2T is equivalent to the inequality 1

2λ
> t. Because

inequality V2 > µ− 1
4λ

hold for all T > 2, inequality q1T > q2T also holds.
By the Bayes rule the inequality qtT > qt+1T is equivalent to the inequality

q1T−t+1 > q2T−t+1, therefore, the inequality holds.
Finally, if T = 2 then q12 = 2λ(µ − V1 +

1
4λ
) = 1

2
because in this case V1 = µ.

Therefore, qT−1T = qTT for all T .

A.10 Proof of Proposition 5

For convenience we denote x = 1
λ
. Matějka and McKay (2015) analysis imply that

the unconditional probabilities of choosing the first candidate in the case of T = 2
and T = 3 equal

q12 = −eµx
−1 + eµx + µ− µex

(ex − eµx)(−1 + eµx)
; q13 = −eg(µ)x

−1 + eg(µ)x + µ− µex

(ex − eg(µ)x)(−1 + eg(µ)x)

We consider the behavior of q12 and q13 as a function x and, therefore, also consider
g(µ) as a function of x and use the notation q12(x), q13(x) and R(x) correspondingly.

The proof consists of three parts. We first show that lim
x→0

q12(x) =
1
2

holds. Later,
we consider the Taylor approximation of the function R(x) at x = 0. We show that
R(x) = µ + (1

8
µ − 1

8
µ2)x + o(x) holds. Finally, we show that if R(x) admits such

form then lim
x→0

q13(x) =
3
8

holds.
Part 1.
We use the second-order Taylor expansion as

ex = 1 + x+
p2

2
+ o(p2), eµx = 1 + µx+

(µx)2

2
+ o(p2)

Substituting these expressions to the formula for q12 gives

q12(x) = −eµx
1
2
p2(µ2 − µ) + o(p2)

p2µ(1− µ) + o(p2)
.

Clearly, lim
x→0

−eµx = −1 holds. Therefore,

lim
x→0

q12(x) = −
1
2
p2(µ2 − µ) + o(p2)

p2(µ− µ2) + o(p2)
=

1

2
.

Part 2.
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Matějka and McKay (2015) analysis imply that value R(x) can be expressed as

R(x) =
1

x

(
µ log

(
q12(x)e

x+(1−q12(x))e
µx
)
+(1−µ) log

(
q12(x)+(1−q12(x))e

µx
))

.

Clearly, q13(x) is analytic function on x ∈ (0, 0 + ε), therefore, R(x) is also analytic
on x ∈ (0, 0 + ε). We derive the first-order Taylor expansion for function R(x). For
that we use the second-order Taylor expansion of q12(x)

q12(x) =
1

2
+ βx+ γp2 + o(p2),

where β, γ are some real numbers. Plugging in the expressions for exponential
function and q12(x) inside the first log results into expression

log
(
1 + x(

1

2
+

1

2
µ) + p2(

1

4
+ β +

µ2

4
− βµ) + o(p2)

)
Using the second-order Taylor expansion for log(.) and multiplying the resulting
expression by µ leads to the following expression for the first term in the sum for
R(x):

x
1

2
(1 + µ)µ+ p2µ(

1

4
+ β +

µ2

4
− βµ− 1

2
(
1

2
+

1

2
µ)2) + o(p2).

Similarly, we get the expression for the second term in the sum for R(x) :

x
1

2
µ(1− µ) + (1− µ)(

µ2

8
− βµ) + o(p2).

Plugging them into the formula for R(x), we obtain

R(x) =
1

x

(
xµ+

1

8
µ(1− µ)p2 + o(p2)

)
= µ+

1

8
(µ− µ2)x+ o(x).

Part 3.
For convenience we denote α = 1

8
(µ − µ2). Therefore, we write R(x)x = µx +

αp2 + o(p2) and the second-order Taylor expansion for eR(x)x becomes

eR(x)x = 1 + µx+ p2(α +
µ2

2
) + o(p2).

We substitute this expression into the fraction for the formula for q13(x):

q13(x) = −eR(x)xp
2(α + 1

2
(µ2 − µ)) + o(p2)

p2(µ− µ2) + o(p2)

Clearly, lim
x→0

−eR(x)x = −1 holds. Therefore,

lim
x→0

q13(x) = −
p2(α + 1

2
(µ2 − µ)) + o(p2)

p2(µ− µ2) + o(p2)
=

1

2
− α

µ− µ2
.

From the Part 2 we get that α = 1
8
(µ− µ2). Therefore, lim

x→0
q13(x) =

3
8
. By the Part

1 lim
x→0

q12(x) =
1
2
, thus, lim

x→0
q23(x) = lim

x→0
q33(x) =

5
16

.
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A.11 Proof of Proposition 6

We analyze the problem as a collection of static problems (2) at period i with an
outside option Vi. We compare the solution of the problem to the solution when
µi = µ for all i.

Recall that for any i, the value Vi does not depend on the history. Therefore, for
i > i′, problem (2) does not change, and DM chooses the same optimal interview
structure.

In the problem at the period i = i′, the outside option does not change, but
the prior belief changes. Optimal posteriors are independent of the prior belief;
therefore, DM does not change the difficulty of the optimal interview.

In the problem at period i = i′ − 1, the continuation value Vi becomes larger. It
leads to two observations: by Lemma 1 DM chooses interview that is more difficult,
and the continuation value Vi−1 increases. Applying such an argument iteratively for
all interviews before i′−1, we get that the employer chooses more difficult interviews
for all i < i′.

A.12 Proof of Proposition 7

Similarly to the static problem, we denote g(µ1, µ2) as the value function of the
problem with two candidates, where µ1 is the expected quality of the first agent
and µ2 is the expected quality of the second agent. To derive the optimal order,
we apply the Taylor expansion argument. Function g(µ1, µ2) is, clearly, analytical.
Therefore, the inequality between g(µ + ε, µ) and g(µ, µ + ε) is equivalent to the
inequality between gµ1(µ, µ) and gµ2(µ, µ), where the subscript refers to the partial
derivative.

Using definition of the function g(µ1, µ2) we can write

g(µ1, µ2) =
pHµ2

− µ1

pHµ2
− pLµ2

(µ2 − c(pLµ2
)) +

µµ2 − pLµ2

pHµ2
− pLµ2

(pHµ2
− c(pH1 ))

for any µ1, µ2, if DM acquires the information. Therefore, in the optimum we can
express gµ1(µ1, µ2) and gµ2(µ1, µ2) as

gµ1(µ1, µ2) =
1

pHµ2
− pLµ2

(
− µ2 + c(pLµ2

) + pHµ2
− c(pHµ2

)
)
;

gµ2(µ1, µ2) =
pHµ2

− µµ2

pHµ2
− pLµ2

,

where the first equality comes from the fact that optimal posteriors are independent
of the prior, and the second comes from the Envelope theorem. Thus, inequality
between partial derivatives gµ1(µ, µ) and gµ2(µ, µ) is equivalent to the inequality
between the c(pLµ2

) and c(pHµ2
). We get the desired result about the optimal order

by the proof of the Proposition 2.
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B Reformulation of the static problem
Lemma B4. There exists a bijection between static problems (2), in which DM
chooses posterior distribution and static problems

max
q∈[0,1]

U(q, V ), (B.1)

in which DM chooses marginal probability. For any solution (pL, pH) to problem
(2) exists unique solution q∗ to problem (B.1) and vice versa, and equality g(V ) =
U(q∗, V ) holds.

Additionally, problem (B.1) is concave in q, with unique solution, and the interior
solution of (B.1) is decreasing in V .

Proof. Instead of relying on the concavification technique to solve the static problem
(2), we introduce the unconditional probability explicitly as a choice variable. In
the concavification technique, the optimal unconditional probability is derived as a
function of the two posterior beliefs that satisfy Bayesian consistency. Instead, we
show the opposite: that optimal posteriors can be derived from the unconditional
probability of choice.

We first analyze the case in which inequality pH > µ > pL holds. That is, when
V ∈ (VL, VH). Using the fact that support of the optimal posterior distribution has
no more than two points we rewrite the static problem (2) as

max
(q,pH ,pL)∈[0,1]3

{q(pH − λc(pH)) + (1− q)(V − λc(pL))}

s.t. qpH + (1− q)pL = µ,

pH ≥ pL.

(B.2)

We denote the objective in the above problem as Ũ(q, pH , pL). Using the identity
from the multivariable calculus we can write max

q,pH ,pL
Ũ(q, pH , pL) = max

q
max
pH ,pL

Ũ(q, pH , pL).

Therefore, problem (B.2) can always be solved sequentially finding optimal pL, pH
given q and then optimize over q. To show the equivalence between problems, we
need to show first that for given q, there is only one pair of optimal (pL, pH) and
second that there is a unique optimal q.

To show that exists a unique pair of optimal (pL, pH) given q we observe that
the interior solution to the static problem (2) should satisfy necessary optimality
conditions in problem (B.2). In particular, for given q optimal (pL, pH) should satisfy
the system {

−λc′(pL) = 1− λc′(pH)
qpH + (1− q)pL = µ.

We show that given q ∈ (0, 1) the system has a unique solution (pL, pH). We
rewrite the first equation as pL = (c′)−1(c′(pH) − 1

λ
). This expression define a

function pL(pH). Indeed, c′(pH) is increasing in pH , therefore mapping pL(pH) is
also increasing and the mapping defines unique pL for any pH .

We rewrite the second equation as q = (µ−pL)/(pH −pL). Simple algebra shows
that the derivative of the right-hand side with respect to pH is positive and, therefore,
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the right-hand side is increasing in pH . Therefore, for any given q exists unique pH

and, thus, for any given q exists unique pair (pL, pH) that solves the system above.
Further, we write pL(q), pH(q) to emphasize the dependence of optimal posteriors
from the marginal distribution.

Following Fosgerau et al. (2023) we show that problem (B.1) is concave. Without
abuse of notation, we omit V in the argument and denote the objective function as
U . The derivative equals to

U ′(q) = −pH(q) + λc(pH(q)) + (V − λc(pL(q)))+

+(1− q)((pH(q))′ − λc′(pH(q))(pH(q))′)− (q)λc′(pL(q))(pL(q))′

where (pH(q))′, (pL(q))′ are the derivative of the posteriors with respect to q. Using
optimality condition λc′(pH)− λc′(pL) = 1 and differentiating Bayesian consistency
to get (1− q)(pH(q))′ + q(pL(q))′ = pL(q)− pH(q) we obtain

U ′(q) = pH(q)− λc(pH(q))− (V − λc(pL(q))) + λc′(pL(q))(pH(q)− pL(q)).

Differentiating the expression with respect to q one more time and using optimality
condition for posteriors result in

U ′′(q) = λc′′(pL(q))(pH(q)− pL(q))(pL(q))′.

We show that inequality (pL(q))′ < 0 holds. Combining optimality condition for
posteriors and differentiable Bayesian consistency condition we obtain that equality
(pL(q))′

(
q c′′(pL(q))
c′′(pH(q))

+ 1 − q
)

= pL(q) − pH(q) holds. Thus (pL(q))′ < 0 holds and
U ′′(q) < 0 holds and problem (B.1) is concave. Therefore, problem (B.1) has a
unique solution that is determined from the first-order condition or on the boundary.
However, because the inequality pH > µ > pL holds, the optimal q is interior and
uniquely determined from the first-order condition.

If V /∈ (VL, VH) then DM chooses degenerate distribution, optimal q equals to 0
if V ≤ VL and equals to 1 if V ≥ VH .

To get comparative statics of the optimal q with respect to V we employ standard
supermodularity argument: optimal interior q is decreasing in V , because the mixed
derivative of ∂2U(q,V )

∂q∂V
= −1 is negative.

Lemma B4 allows to analyze a static problem with only one control variable. Op-
timal posteriors could be obtained from the optimality conditions, because there is
a one-to-one mapping between optimal marginal probability and optimal posteriors.

We compare the solution to the unrestricted and restricted problems. Using
Lemma B4 without abuse of notation, we rewrite the unrestricted dynamic problem
as

max
ri∈[0,1]

U(ri, Vi) ∀ i ̸= T,

s.t.

Vi =
{

max
ri+1∈[0,1]

U(ri+1, Vi+1)
}
,

VT = 0,

(B.3)
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where we use r as a decision variable to avoid possible confusion between the prob-
ability of choosing a candidate i in the dynamic problem and the probability of
candidate i passing a test. Similarly, we rewrite the restricted problem as

max
r∈[0,1]

U(r, V1(r, µ)), (B.4)

where V1(r, µ) = U(r, U(r, . . . , U(r, µ))︸ ︷︷ ︸
T−3

). We distinguish the restricted problem from

the unrestricted one, including r in the second argument of the objective function.

B.1 Proof of Proposition 8

We assume that the solution to the restricted problem is interior and later show
that it is indeed optimal. Optimal interior q∗ solves

∂U

∂r
(q∗, V1(q

∗, µ)) +
∂U

∂V
(q∗, V1(q

∗, µ))× dU

dr
(q∗, V2(q

∗, µ)) = 0.

Using the chain rule we can express this first-order condition as

∂U

∂r
(q∗, V1(q

∗, µ)) +
T−1∑
j=2

(
∂U

∂r
(q∗, Vj(q

∗, µ))

j−1∏
k=1

∂U

∂V
(q∗, Vk(q

∗, µ))

)
= 0. (B.5)

We will show that the first term in the first-order condition is negative, that inequal-
ity ∂U

∂r
(q∗, V1(q

∗, µ)) < 0 holds. We show this fact by the contradiction, analyzing
the second term in the first-order condition.

First, we observe, that for general values r, V the following partial derivatives
equal to

∂U

∂V
(r, V ) = 1− r,

∂2U

∂V ∂r
(r, V ) = −1,

therefore, partial derivative ∂U
∂V

(r, V ) is always positive and function ∂U
∂r
(r, V ) is

decreasing in V .
Second, let inequality ∂U

∂r
(q∗, V1(q

∗, µ)) ≥ 0 hold. The partial derivative of func-
tion in r is decreasing in the second argument, therefore, inequality
∂U
∂r
(q∗, Vi+1(q

∗, µ)) > 0 hold for all i > 1. Thus, the second term in the first-order
condition (B.5) is positive. Therefore, the left-hand side of the equation (B.5) is
positive. We reach a contradiction, thus, inequality ∂U

∂r
(q∗, V1(q

∗, µ)) < 0 holds.
To compare q∗ with q∗∗ we observe that inequality ∂U

∂r
(q∗, µ) > 0 holds. Indeed, if

this inequality does not hold, then the argument from the above paragraph suggests
that the left-hand side of the first-order condition (B.5) is negative. Optimal q∗∗ in
the T = 2 case solves ∂U

∂r
(q∗∗, µ) = 0. Function ∂U

∂r
(r, V ) is decreasing in r, therefore,

inequality q∗∗ > q∗ holds.
To compare q∗ with q∗∗∗ we consider the auxiliary static problem with an outside

option V1(q
∗, µ):

max
r

{U(r, V1(q
∗, µ))}

In this problem, the value of the outside option equals the obtained outside option
value in the restricted problem. Let q∗∗∗∗ be a solution to this problem, therefore
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q∗∗∗∗ solves ∂U
∂r
(q∗∗∗∗, V1(q

∗, µ)) = 0. Function ∂U
∂r
(r, V ) is decreasing in r, therefore

the inequality q∗ > q∗∗∗∗ holds.
The unrestricted problem is a static problem with an outside option V1. Clearly,

the inequality V1 > V1(q
∗, µ) holds. Optimal r in the static problem decreases in the

outside option value V , therefore, inequality q∗∗∗∗ > q∗∗∗ holds and by transitivity
inequality q∗ > q∗∗∗ also holds.

We show that the optimal q∗ is interior by taking derivatives of the function
U(r, V1(r, µ)) on the boundary. We consider the case r = 0, and the analysis of case
r = 1 is identical. We observe that Vi(0, µ) = µ for all i < T . Additionally, equality
∂U
∂V

(0, Vi(0, µ)) = 1 holds. Therefore, using the left-hand side of the expression (B.5)
we obtain that

∂U

∂r
(r, V1(r, µ))

∣∣∣∣
r=0+0

= (T − 1)
∂U

∂r
(0, µ) > 0.

The last inequality holds because the static problem with an outside option µ has
an interior solution and by Lemma B4 function U(r, µ) is concave in r.
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