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Abstract

We study settings where information in the form of Bayesian signals is acquired by an expert
on behalf of a principal. Information acquisition is costly for the expert, and crucially
not verifiable by the principal. The expert is compensated by the principal with a menu
of state-contingent payments. We provide a full characterization of the set of all menus
that implement (resp., strictly implement) each signal. Moreover, we provide a closed-form
characterization for the expected cost for the cheapest such menu, which we call proxy cost of
the signal. Surprisingly, in general, the proxy cost is neither increasing in the Blackwell order,
nor posterior-separable, even when the expert’s cost function is posterior-separable itself.
Subsequently, we study the full agency problem (by introducing a downstream decision), thus
endogenizing the signal. We show that there is always an optimal signal that can be strictly
implemented, meaning that it is without loss of generality to exogenously restrict attention
to strict implementation. As a result, similarly to Bayesian persuasion, the complexity of
the principal’s optimal signal is bounded by the cardinality of the state space. Finally, we
present some applications of interest.
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1. Introduction

Relying on information provision by experts or analysts is a central characteristic of several eco-
nomic environments (e.g., Bergemann and Bonatti, 2019, and references therein). Depending on
the application at hand, there are multiple reasons why a (female) principal may be interested
in acquiring information from a (male) expert. For instance, consider cases where the princi-
pal wants to acquire information before making a downstream decision (e.g., an investor receives
advise from a financial analyst about the success of a project before deciding whether to invest
in it), or the principal needs arguments in order to persuade an agent to take a certain action
in turn (e.g., a pharmaceutical company presents evidence acquired from a respected doctor on
the safety of a drug in order to persuade the regulators to give approval), or the principal is re-
quired by established institutions to rely on the professional assessment of certified experts (e.g.,
a real-estate developer must consult a civil engineer regarding the stability of the ground before
building house). In all these settings, information acquisition is typically costly for the expert,
as it involves cognitively taxing processes. As a result, without a contract that establishes the
terms of information acquisition and the subsequent reporting, it is often reasonable to expect the
expert to free-ride and not obtain the desired information.

However, even if the principal decides to write a contract, there is a fundamental problem
that naturally arises. Namely, it is difficult to verify what information the expert has obtained
(Kashyap and Kovijnykh, 2016; Rappoport and Somma, 2017; Yoder, 2022; Whitmeyer and Zhang,
2023). This is because neither the information acquisition technology nor the realized outcome
are observable, due to the cognitive nature of the process. Hence, they are not contractible either.
Thus, contracts which aim to reward experts for information acquisition in an incentive compatible
way are inherently difficult to write, as there is very little one can actually condition on.

In this paper, we address this problem from a mechanism-design point of view (e.g., Laffont and
Tirole, 1986), viz., the expert’s (state-contingent) payment depends only on his report, similarly
in some ways to Kashyap and Kovijnykh (2016), Rappoport and Somma (2017), Yoder (2022) and
Whitmeyer and Zhang (2023). Within such a setting, we first want to characterize the contracts
that guarantee that the expert has indeed acquired the principal’s desired information (Section
2). Second, we study the properties of the cost that the principal incurs in the form of payments
to expert (Section 3). Finally, we endogenize downstream decisions, and we seek to identify
what information the principal may optimally seek to acquire via the expert (Section 4). Let us
elaborate on each of these three general questions.

Formally, we consider a general model with finitely many states of nature and a commonly
known prior, where the expert is required to acquire information in the form of a Bayesian signal
and report its realization to the principal. Following the surging literature on rational inattention,
we assume that the expert incurs posterior-separable costs to acquire information (e.g., Caplin et
al., 2022), while his subsequent reporting remains costless. Both the choice of the signal and its
realization are private information of the expert. To incentivize the expert to choose the desired
signal, the principal offers a menu of state-contingent acts.1

Given an arbitrary menu, the expert picks a signal, thereby incurring the respective cost. After
observing the realization of the signal, he updates his beliefs about the state of the world and
then chooses an act so as to maximize his expected utility. Thus, for a given menu, the expert
solves an optimization exercise of choosing a signal so as to maximize net expected utility, subject

1In the language of mechanism design, each act is a message, and the menu is the mechanism. One can label
each act as a posterior belief, thus implicitly resorting to a direct mechanism.
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to the liability constraint. We say that a menu implements (resp., strictly implements) a signal
if it is optimal (resp., uniquely optimal) for the expert to choose this signal in response to this
menu. Thus, the principal’s problem boils down to designing a menu that implements (resp.,
strictly implements) the desired signal. Actually, we can characterize the set of signals that can
be implemented (resp., strictly implemented) by some menu (Theorem 1). Moreover, for each
such signal, we can characterize the set of menus that implement (resp., strictly implement) this
particular signal (Theorem 2). Each such menu can be decomposed into a fixed and a variable
component, where the variable component guarantees incentive compatibility, while the fixed
component determines how the total surplus is divided between the principal and the expert.

Minimizing the expert’s expected payment across the menus that implement a particular signal
yields a new type of cost for information (Theorem 3).2 We refer to this minimal payment as the
cost for proxy attention. The reasoning behind this term is that the principal hires a proxy (viz., a
self-interested expert) in order to incur the attention cost which are associated with the information
acquisition process on her behalf. Then, we proceed to study the basic properties of the cost for
proxy attention. Quite surprisingly, we show that it violates the most basic condition which is
shared among all existing cost functions, i.e., Blackwell monotonicity (Remark 5). Furthermore,
it is not (uniformly) posterior-separable, even though the expert’s cost function is (Corollary 3).

Then, using our new cost function, we study a full agency problem. That is, we explicitly
introduce a downstream decision, to be taken by some agent after the principal has offered a
menu and the expert has acquired information in response to the menu, thus making the choice
of the desired signal endogenous. Depending on the application at hand, the agent who takes the
action is either the principal herself or by a third party. For instance, if the action is taken by
the principal, the problem becomes one of delegated information acquisition. On the other hand,
if the action is taken by a third party, the problem turns into one of costly delegated persuasion
(with the principal being the sender and the third party being the receiver).

Despite the generality of our setting, we show that among the principal’s optimal menus (at the
first stage of the principal-expert interaction), there is always one that induces a unique optimal
signal for the expert. Hence, it is without loss of generality to exogenously restrict focus to strict
implementation (Theorem 5). But even more interestingly, the latter implies that the complexity
of the principal’s optimal signal is bounded by the cardinality of the state space, similarly to the
well-known result from the literature on Bayesian Persuasion.3 Remarkably, in our case, our result
is not driven by posterior-separability, which —as we have already discussed— is often violated
by the cost for proxy attention.

In the final part of the paper, we apply our results in the context of two applications of
interest. First, we consider the case of decentralized information acquisition, where the principal
decides how to allocate information acquisition across a number of experts. Proposition 1 provides
conditions under which delegation to one expert may be strictly preferred, that is, the proxy cost
are superadditive. This is in contrast to the usual cost functions for information, which are either
linear (Pomatto et al., 2023) or subadditive (Sims, 2003). In our second application, we show that
when the stakes are high enough for the principal, she prefers to acquire the information herself
(Proposition 2). Thus, in this case the proxy cost lies in the same family of costs as the expert’s.

The paper is structured as follows. The following subsection surveys related literature. In

2Here we no longer need to make the distinction between weak and strict implementation as the respective
cheapest menus would cost the same in expectation.

3The result of Kamenica and Gentzkow (2011) states that in a Bayesian persuasion game, the sender can achieve
her maximum expected utility with a signal that utilizes at most as many realized posteriors as the number of
states.
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Section 2, we introduce our model and present the results for the existence and characterization
of incentive-compatible menus. Section 3 provides a definition of the cost of proxy attention, an
examination of the properties its violates, and surplus analysis. Section 4 provides the endogenized
version of the problem. In Section 5 we present the remaining two applications. All proofs are
relegated to the Appendices.

1.1. Related Literature

Four related papers to ours are Whitmeyer and Zhang (2023)4, Kashyap and Kovijnykh (2016),
Yoder (2022) and Rappoport and Somma (2017). All of them essentially take a mechanism design
approach, similarly to us, in order to overcome the non-verifiability problem that we face too. Let
us elaborate on the relationship of our work to each of them separately.

Whitmeyer and Zhang (2023) study a problem of compensating an expert for a non-contractible
signal with non-contractible signal realizations and ex post observable state realizations, similarly
to our paper. Although the basic framework and the characterization of weakly implementable
signals are similar, we view this paper as complementary to ours, given the focus on very different
research questions. In particular, they are primarily interested in identifying conditions under
which the first-best outcome can be achieved, looking at both risk-neutral and risk-averse experts.
On the other hand, we impose fewer restrictions on cost functions and (i) characterize the menus
that satisfy not only weak but also strict implementation, (ii) introduce proxy cost for information
and study its properties, and (iii) study the full-agency problem.

Kashyap and Kovijnykh (2016) analyze a model of a credit rating agency which exerts costly
effort in order to acquire a signal about the quality of a project. As is the case here, the choice
of the signal and its realization are private information of the agency. Moreover, the contracts
are contingent both on the rating and the project’s performance. Thus they solve a very similar
problem to ours, albeit only with a binary state space. However, their focus of analysis differs from
ours. In particular, they focus on how the optimal contracts differ depending on who pays, i.e.,
the investors or a planner. They also study the differences between new and established securities.
On the other hand, we also focus on the properties of the proxy cost and the complexity of optimal
signal in the agency problem.

Yoder (2022) considers the problem of contracting for experiments in binary state space. The
expert exerts costly effort to carry out the experiment. This cost, however, depends on the
type of the expert which is private information. This constitutes a problem of moral hazard
and adverse selection. Moreover, the expert produces hard/verifiable evidence. Allowing for two
contracting environments, where the experiment or the outcome of the experiment is contractible,
the paper shows that the additional incentive compatibility constraints are essentially redundant.
An important difference in our analysis is that we show when contracting is contingent on the
outcome of the experiment and the realized state, incentive compatibility can be achieved even in
the absence of hard evidence.

Rappoport and Somma (2017) discuss the alternate problem of incentivizing an agent to per-
form a costly experiment when the target of the information is a third-party rather than the
principal herself. Similarly to Yoder (2022), in their model too the principal can contract on the
expert’s posterior beliefs. Using this they characterize the conditions under which the principal
can achieve her first-best outcome. In particular, they focus on the role of risk preferences and

4We thank an anonymous referee for making us aware of this paper, which independently came out while the
present work was under review.
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symmetry of the experiments for efficiency, under limited-liability. Once again, our focus is very
different as we study the properties of the cost function and the complexity of optimal signal.

This paper can be seen as part of the (ex ante) mechanism design approach to selling/buying
information. This literature is reviewed by Bergemann and Bonatti (2019, Ch. 3), and more
recently by Bergemann and Ottaviani (2021). As opposed for instance to markets for data, the
main premise within this literature is that the compensation scheme is set before signals have
been realized. Contrary to our work, most papers within this literature fix at least some market
characteristics. For instance, Bergemann et al. (2018) study a model of a monopolist expert
offering a menu of verifiable signals together with a price for each of them to a principal with
private information over his willingness to pay. Babaioff et al. (2012) study a similar model with
two-sided private information. Both these papers also differ from ours in that information is
verifiable. Esö and Szentes (2007) consider a consultant (expert) who receives a single signal
and decides whether to disclose it to the client (principal). Within the same stream of literature
belongs the work of Hörner and Skrzypacz (2016) that considers a principal who is interested in
hiring an expert without knowing his competence, and the expert tries to gradually persuade the
principal that he is of a good type. Related to our work is also the paper of Ali et al. (2020)
who study markets for information with multiple principals who can resell information among
themselves at a later stage. In their benchmark case, they show that the expert can extract
strictly positive surplus from at most one principal. Furthermore, the problem compensating the
sale of information has also been recently studied by Haghpanah et al. (2022). Unlike our work,
in their setting information does not have any instrumental value. Moreover, instead of making
compensation state-contingent, they divide it in two stages, one after the signal has been realized,
and one after it has been decided by the principal whether it will be publicized or not.

Our work also relates to the stream of literature providing microfoundations to attention costs
based on the distribution of posteriors. Papers in this literature include Morris and Strack (2019),
Pomatto et al. (2023), Zhong (2022) and, Bloedel and Zhong (2021), among others. The central
theme in this literature is to derive static costs of information under varying assumptions on the
dynamics of the learning processes and costs. The crucial difference between this literature and
ours is that the cost to the principal is derived from delegation. In effect, the principal incurs
indirect attention costs in terms of compensation to the agent who, as we assume, is rationally
inattentive. Relatedly, our work also contributes to the stream within the marketing literature
that focuses on pricing of information. For instance, Arora and Fosfuri (2005) study pricing of
diagnostic information (i.e., information that allows to predict if a project will be successful or
not), and in particular they are interested in the role of prior beliefs on the value of diagnostic
information. In a similar framework, Chang and Lee (1994) and Iyer and Soberman (2000) study
optimal pricing of information provided by a marketing consultant to a set of principals. The
difference between our work and these papers is once again that we remain agnostic on the un-
derlying market characteristics, unlike all these contributions which specify certain characteristics
(something understandable of course, as they are interested in information acquisition in a specific
marketing context).

Our treatment of the expert’s optimization problem is broadly related to a larger literature on
the tradeoff between material payoffs and cognitive costs. The foundations of this tradeoff have
been extensively studied by Alaoui and Penta (2016, 2022) and Alaoui et al. (2020).

There is also a relation between our paper and a stream within the information design literature
that focuses on applications where information acquisition is delegated by the principal to some
third agent, other than the receiver (Bizzotto et al., 2020). While this setting differs from ours
in many central aspects, the two share an important common feature, namely that the principal
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wants the expert to acquire a specific signal.
Our paper is also related – albeit more tangentially – to parts of the contract theory litera-

ture on optimal incentive schemes for acquiring information. Some recent contributions include
Zermeño (2011, 2012) which consider a linearly ordered subset of signals that are represented by
the expert’s effort, Carroll (2019) who restricts the set of signals and considers a principal who is
maxmin expected utility maximizer, and Lindbeck and Weibull (2020) who restrict attention to
binary menus and entropic costs. But our mechanism design approach to selling/buying informa-
tion is very different from the contract theory literature, for a variety of reasons. First, the latter
literature studies the problem of an optimal incentive scheme from the point of view of the prin-
cipal, thus implicitly postulating specific market characteristics (i.e., the principal always makes
a take-it-or-leave-it offer as it is often the case in contract theory). Second, in our work a specific
signal is traded, whereas the contract theory literature focuses on the principal’s optimization
problem which determines the equilibrium traded signal and compensation scheme endogenously.
Finally, the menu of contracts which correspond to the menus of acts used in our analysis have
been extensively applied in the literature on procurement and regulation beginning with Laffont
and Tirole (1986).

2. Signal implementation

2.1. Costly information acquisition

Consider a finite state space Ω, and let µ ∈ ∆(Ω) denote an arbitrary subjective belief. Throughout
the paper, for notation simplicity, we often index states by Ω = {ω1, . . . , ωK}, and we denote by
µk := µ(ωk) the probability that belief µ attaches to the k-th state. The belief that attaches
probability 1 to state ω will be denoted by [ω].

Information is acquired by means of Bayesian signals chosen by a risk-neutral expert, who has
a full-support prior belief µP ∈ int(∆(Ω)). Each signal is a stochastic mapping from the set of
states to a compact set of signal realizations. So we can represent the set of signals as the set of
mean-preserving distributions of posterior beliefs:

Π(µP ) :=

{
π ∈ ∆(∆(Ω)) :

∫
∆(Ω)

µ dπ = µP

}
. (1)

Call signal π ∈ Π(µP ) completely uninformative if the support of π (henceforth denoted by
supp(π)) contains only µP itself. For a set of posteriors M ⊆ ∆(Ω) and µP in the relative interior
of the convex hull of M (henceforth denoted by relint(conv(M))), the signal π ∈ Π(µP ) with
supp(π) = M is unique if and only if the beliefs in M are linearly independent in RΩ. As usual,
the set of Bayesian signals in Π(µP ) is endowed with the partial Blackwell order, � (Blackwell,
1953).

The expert’s cost for acquiring a signal π ∈ Π(µ) is equal to

C(π) := Eπ(c)− c(µ), (2)

where c : ∆(Ω) → R is a continuous strictly convex function. Throughout the paper, we assume
that c is continuously differentiable in the interior of ∆(Ω), with ∇c(µ) denoting the gradient at
µ. At a boundary point µ, we define the subdifferential of c by

∂c(µ) := {t ∈ RΩ : c(µ′) ≥ c(µ) + 〈t, µ′ − µ〉 for all µ′ ∈ ∆(Ω)}.
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Each vector in this set is called a subderivative or subtangent at µ. At every interior µ, by convexity
of c it follows that ∂c(µ) 6= ∅, and by differentiability it follows that ∂c(µ) is a singleton containing
only ∇c(µ). At boundary points on the other hand, ∂c(µ) will either be empty or it will contain
infinitely many subtangents. In the latter case, we denote by ∇c(µ) ∈ ∂c(µ) the limit of ∇c(µk),
where (µk)

∞
k=1 is a sequence of full-support beliefs converging to µ.5 Geometrically, ∇c(µ) will be

the flattest of all subtangent at µ. Thus, it is straightforward to verify that Eµ̃(∇c(µ)) ≥ Eµ̃(t)
for every t ∈ ∂c(µ) and every µ̃ ∈ ∆(Ω).

A cost function that takes the form of (2) is called (uniformly) posterior-separable, and it is
widely-used within the rational inattention literature.6 Throughout the paper, with slight abuse
of terminology, we drop the word “uniform” and we simply call our cost posterior-separable.
The most common special case is the entropic cost specification, which is obtained by setting
c(µ) := κH(µ) for some κ > 0, where

H(µ) :=
∑
ω∈Ω

µ(ω) log µ(ω)

is the Shannon entropy function, with the usual convention 0 log 0 = 0. This specific function is
used in many applications throughout the literature, and we will also adopt it in our applications
section.

2.2. Problem definition

Suppose that two risk-neutral agents, a (female) principal and a (male) expert, share the prior
µP . The principal wants to acquire information in the form of a signal about the state space.
Information acquisition is delegated to the expert. Following a mechanism design approach, the
principal incentivizes the expert to acquire specific signal(s). Incentives are based on what the
expert reports to the principal and the eventual state realization.

Formally, an act is a state-contingent payment a ∈ RΩ with a(ω) being the state-payment at
ω. A menu is a compact set of acts A ⊆ RΩ, while A denotes the set of all compact menus. Each
menu A ∈ A is interpreted as a mechanism, and each act a ∈ A is interpreted as a message that
yields the corresponding state-contingent payment. Whenever the expert faces A, he first chooses
a signal π ∈ Π(µP ), then he updates to some posterior µ ∈ supp(π), and he finally picks an act
a ∈ A that maximizes the expected payoff

Eµ(a) :=
∑
ω∈Ω

µ(ω)a(ω).

Which is the optimal menu from the principal’s point of view? The answer to this question
depends the liability constraint, which is formally identified by some lower bound b ∈ RΩ. The
corresponding set of feasible menus becomes

Ab :=
{
A ∈ A : a ≥ b for all a ∈ A

}
. (3)

5In Lemma A1 in the Appendix, using Whitney’s Extension Theorem, we prove that all such sequences converge
to the same vector, thus implying that ∇c(µ) is well-defined.

6The rational inattention literature was initiated by Sims (2003) in the context of macroeconomics, before
attracting attention among microeconomists (Caplin and Dean, 2015; De Oliveira et al., 2017; Ellis, 2018) and
being widely used in applications (Hu et al., 2023; Li and Hu, 2023; Lipnowski et al., 2020; Tsakas, 2020). Partly,
its appeal stems from the fact that it has strong theoretical foundations (Caplin et al., 2022; Zhong, 2022; Denti,
2022; Tsakas, 2020) and is supported by recent experimental evidence (Dean and Neligh, 2023).
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Notice that the liability constraint need not be a constant act. A second type of feasibility
constraints sometimes arises in the literature when a payment scheme A ∈ A has been already set
by the expert, and the principal simply decides whether to accept or reject it, as in Kashyap and
Kovijnykh (2016), i.e., the principal can effectively choose a menu from {A, {0}}, where 0 is the
constant act that pays 0 at every state. In this last case the feasibility constraint is endogenized,
as there is third stage added in the beginning of the game where the expert sets A. In this paper,
we will focus on the earlier exogenous liability constraints.

Before thinking about the principal’s optimization problem within the constrained set of menus,
we first need to understand how the expert best responds to each menu. In particular, we want
to characterize the set of signals that the expert chooses in response to each menu A ∈ A.

2.3. The expert’s maximization problem

For an arbitrary menu A ∈ A, the expert’s indirect payoff as a function of each posterior belief
µ ∈ ∆(Ω) is given by the convex function

φA(µ) := max
a∈A

Eµ(a). (4)

This means that his expected payoff from choosing a signal π is equal to Eπ(φA). As we will see,
from the expert’s point of view, the function φA is the only relevant part of the menu, i.e., the
expert’s optimization problem will remain invariant across different menus A,A′ ∈ A for which
φA = φA′ . Nevertheless, later in the paper we will see that the choice between A and A′ will
matter for the principal.

Subtracting the cost C(π) = Eπ(c)− c(µP ), we find the expert’s net expected payoff

VA(π) := Eπ(φA)− C(π) = Eπ(φA − c) + c(µP ).

Thus, whenever the expert faces a menu A, his problem boils down to maximizing VA over the
set Π(µP ) of Bayesian signals corresponding with prior µP . For notation simplicity, we define the
function

ψA(µ) := φA(µ)− c(µ). (5)

Since c(µP ) is just an additive constant, the expert’s maximization problem reduces to maximizing
Eπ(ψA) over Π(µP ). Throughout the paper, for notation simplicity, we denote the set of optimal
signals for some menu A ∈ A by

ΠA(µP ) := arg max
π∈Π(µP )

Eπ(ψA).

Solving this maximization problem can be done using the concavification technique which was first
introduced in the repeated games literature by Aumann and Maschler (1995) and was later exten-
sively used in the Bayesian persuasion literature following the seminal contribution of Kamenica
and Gentzkow (2011): we take the concave closure of ψA,

ψA(µ) := max
π∈Π(µ)

Eπ(ψA), (6)

and we find the largest set MA ⊆ ∆(Ω) containing the prior µP where ψA is linear (Tsakas,
2020). It is well-known that the optimal signals are exactly those distributions π ∈ Π(µP ) that
put positive probability only to points µ ∈MA such that ψA(µ) = ψA(µ).
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In Figure 1, menu A = {aP , aL, aH} is feasible menu given the constraint b ∈ RΩ, i.e., no
act intersects the interior of the grey-shaded area. The longest interval where ψ̄A is linear is
MA = [µ1

L, µ
1
H ]. The only points in this interval where ψ̄A coincides with ψA itself are {µP , µL, µH}.

Hence, the set of optimal signals ΠA(µP ) contains the completely uninformative signal, the unique
signal with support {µL, µH}, as well as infinitely many signals with support {µP , µL, µH}.

0 (µ1)1
c

aH
φA

aP

aL

ψ̄A

µ1L µ1P µ1H

b

Figure 1: The expert’s belief is given µ ∈ ∆(Ω) is identified by the probability µ1 := µ(ω1).
The expert’s cost function is given by the expected increase of the strictly convex function c.
The expert faces the menu A = {aL, aP , aH}. His indirect utility function is given by φ(µ) =
{Eµ(aL),Eµ(aP ),Eµ(aH)}. The concave closure ψ̄A of the function ψA := φA − c is linear in the
interval [µ1

L, µ
1
H ], and within this interval it coincides with ψA only at µL, µH and µP . Thus, every

optimal signal for the expert will necessarily yield of these posteriors.

Recall that one of our stated objectives is that the chosen act —or equivalently the reported
message— reveals the actual signal realization to the principal. As it turns out, this is not
really a concern, i.e., as also pointed out by Rappoport and Somma (2017), non-observability of
the posteriors does not really pose a constraint. By simply observing the expert’s chosen act, the
principal is able to unambiguously pin down the realized posterior belief. In this sense, throughout
the paper, choosing an act is equivalent to (implicitly) reporting his true posterior. In the context
of our previous example, aL will be chosen if and only if the posterior is µL; aH will be chosen if
and only if the posterior is µH ; and finally aP will be chosen if and only if the prior µP is realized.

Let us now do a bit of reverse engineering. That is, we fix a signal π ∈ Π(µP ) and try to identify
the menus under which this signal will possibly/definititely be chosen. As less of a mouthful, we
will use the following terminology to describe such menus:

Definition 1. For a signal π ∈ Π(µP ), the following is said:

(i) Menu A ∈ A implements signal π if π ∈ ΠA(µP ).

(ii) Menu A ∈ A strictly implements signal π if {π} = ΠA(µP ).

Moving forward, our first set of questions (which signals can be implemented/strictly imple-
mented? ) is answered in Section 2.4, while the answer to our second set of questions (which menus
implement/strictly implement each signal? ) is found in Section 2.5.
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2.4. Which signals can be implemented?

We first establish necessary and sufficient conditions for the existence of menus that implement,
and respectively strictly implement a signal. Of course, if the signal is the completely uninforma-
tive one, this can be done by picking an arbitrary singleton menu. So we look beyond this trivial
case.

Let us start by introducing the following two properties of a signal:

(P1) Subdifferentiability: At every µ ∈ supp(π) the function c is subdifferentiable.

(P2) Independence: The beliefs in supp(π) are linearly independent.

Then, we can characterize the set of signals that can be implemented (in the weak and strict
sense) in terms of these two properties.

Theorem 1. Let π be a signal that is not completely uninformative.

(a) Signal π is implemented by some menu in A if and only if it satisfies (P1).

(b) Signal π is strictly implemented by some menu in A if and only if it satisfies (P1)− (P2).

Intuitively, the previous theorem says that for almost every signal, there is a menu that makes
it optimal for the expert to pick it. This means that the principal’s basic feasibility constraint
is very weak. Of course, this will no longer be the case if the principal wants to guarantee that
her desired signal will be picked by the expert, as shown by the second part of the theorem
which characterizes the signals for which such guarantee is possible. A partially similar result is
obtained by Whitmeyer and Zhang (2023, Prop. 4.2), although they focus exclusively on weak
implementation, and they exogenously rule out at the outset signals that put positive probability
to the boundary of ∆(Ω).

We will henceforth denote by Π1(µP ) ⊆ Π(µP ) those signals that are implemented by some
menu in A, and by Π2(µP ) ⊆ Π1(µP ) the ones that are strictly implemented by some menu in A.

Regarding the first part of the previous theorem, by c being convex, it follows it is subdiffer-
entiable in the interior of ∆(Ω). So, only signals that put positive probability to the boundary
of the simplex could in principle violate (P1). This is for instance the case if the expert has
entropic information cost, while at the same time the principal wants to implement the perfectly
informative signal which reveals the true state with probability 1.

Regarding the second part, it trivially implies that all binary signals can be strictly imple-
mented when the state space is binary. However, things get a bit more complicated in higher
dimensions, e.g., signals with three possible realizations can only be strictly implemented if the
realizations are not collinear. Thus, | supp(π)| ≤ |Ω| is only a necessary condition for π to be
strictly implemented, but it is not sufficient when |Ω| ≥ 3.7

2.5. Which menus implement a signal?

Now we turn to our second question: which are the exact menus that implement (resp., strictly
implement) a given signal?

To state our result we need to introduce some additional machinery. A convex function g :
∆(Ω) → R will be said to support c at M ⊆ ∆(Ω) whenever g(µ) ≤ c(µ) at all µ ∈ ∆(Ω) with

7Part (b) of our result can also follow from Winkler (1988).
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equality holding if and only if µ ∈M . An example of such a function g is the pointwise maximum
of a collection of subtangents at M , i.e., g(µ) := max{Eµ(t)|t ∈ ∂c(µ), µ ∈ M}. Then, we are
ready to characterize the set of menus that implement (resp., strictly implement) signal π.

Theorem 2. For a signal π ∈ Π(µP ) the following hold:

(a) Suppose that π ∈ Π1(µP ). Then, menu A implements signal π if and only if there exists
some linear functional LA such that φA − LA supports c at some M ⊇ supp(π).

(b) Suppose that π ∈ Π2(µP ). Then, menu A strictly implements signal π if and only if there
exists some linear functional LA such that φA − LA supports c at supp(π).

Intuitively, the previous result shows that in order for a menu to induce a signal, we should be
able to decompose it into two parts: a specification of the incentives that are needed in order for
the expert’s marginal benefit to be equal to his marginal cost, and a transfer which guarantees that
the menu satisfies the liability constraint. We further elaborate on this decomposition in Remark
2. A similar result appears in Whitmeyer and Zhang (2023, Thm. 4.3), in that they also describe
the incentives that are needed for a signal to be implemented in terms of the differences in state-
contingent payments across different acts. Still, their analysis focuses on weak implementation
and signals that put positive probability only on full-support posteriors.

In Figure 2, our theorem implies that menu A = {aP , aL, a′L, aH} implements signal π with
support supp(π) = {µL, µH}. This is because φA − LA supports c at M = {µP , µL, µH}, which is
a superset of supp(π).

This last example provides a clear roadmap on how to construct menus that implement a signal
π ∈ Π1(µP ):

• Step 1: We take (at least) one subtangent of c at each posterior in supp(π). In our previous
example, these are the hyperplanes in Eµ(tL), Eµ(t′L) and Eµ(tH).

• Step 2: We may take a second collection of hyperplanes, all of which lie below c. In our
previous example, these are the hyperplane Eµ(tP ).

• Step 3: We add to each hyperplane from the previous two steps the same linear functional
LA. In our previous example, this yields the hyperplanes Eµ(aL), Eµ(a′L), Eµ(aH) and
Eµ(aP ).

Remark 1. In the language of mechanism design, Steps 1 and 2 is conceptually analogous to
satisfying the incentive-compatibility constraint, while Step 3 can be seen as the equivalent of
satisfying the individual rationality constraint. /

The menu that implements π is not unique. This is due to a variety of reasons. First of
all, in Step 1, for each posterior in supp(π) we can add as many tangent hyperplanes as we like.
This type of multiplicity disappears if we focus on signals with full-support posteriors. Second,
in Step 2 we may arbitrarily add hyperplanes that are dominated by c. Such additional acts
may be tangents at beliefs outside supp(π) or they may lie strictly below c. In the first case
they will induce more optimal signals (with support larger than π), whereas in the second case
the additional hyperplanes will be completely inconsequential, as they will eventually correspond
to irrelevant acts that will never be used anyway. This second type of multiplicity disappears if
we focus on strict implementation. Finally, in Step 3, we can rescale the menu by adding the
same act to each of the acts that we obtained from the previous two steps. Of course, there are
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Figure 2: The menus that implement signal π with supp(π) = {µL, µH} are obtained by first
taking tangents of c at {µL, µP , µH} ⊇ supp(π) and then adding the same linear functional LA.

infinitely many such acts which guarantee that the liability condition is satisfied. This third type
of multiplicity disappears if we require that the menu is the cheapest one from the set of feasible
menus. We further elaborate in the next section.

Remark 2. The previous discussion implies that every menu that strictly implements a signal can
be decomposed into a flat and a variable payment. In the previous example, the menu {aL, aH}
that strictly implements signal π is decomposed into the flat payment LA(µ) which is paid to the
expert irrespective of which action he takes, and the variable payment max{Eµ(tL),Eµ(tH)} which
depends on the expert’s action. Importantly, if the signal has full support, all menus that strictly
implement the signal agree on the variable payment and differ only on the flat payment. Thus, the
following interpretation is given: the variable payment compensates for the lack of verifiability by
providing the exact incentives that lead to the specific signal being chosen, whereas the flat payment
determines how the total surplus is split between the two agents. We elaborate on the division of
the surplus later in the paper. /
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3. Supply of information

3.1. Cheapest menu

As we have already discussed, there are multiple menus that implement (resp., strictly implement)
signal π. Which is the cheapest one for the principal? Answering this question will turn out to
be crucial in applications where we specify the principal’s objective function, and we treat the
principal as the designer who chooses the menu.

Unfortunately, the definition of the “cheapest menu” is not straightforward, particularly when
the signal cannot be strictly implemented. Indeed, whenever π ∈ Π1(µP ) \ Π2(µP ), there are
additional optimal signals besides π. Thus, from the principal’s point of view, it is ambiguous
which of these optimal signals will be eventually chosen by the expert. As a result it is ambiguous
how much the menu will end costing in expectation.

Despite this difficulty, it is still possible to find a cheapest menu among those that weakly
implement π. The idea is that this menu will be preferred by the principal compared to any
alternative menu that implements π, not only if π itself is eventually chosen, but also if any
other signal is picked among those that are optimal for the expert. In this sense our notion of
“a cheapest menu” is robust with respect to the expert’s optimal choices. And of course, this
definition is directly extended to signals that can be strictly implemented.

Here is how such a menu is obtained. First, we define the gradient at each posterior in the
support of π:

Aπ := {∇c(µ)|µ ∈ supp(π)}. (7)

Of course, if µ is an interior point, by differentiability of c, the definition of ∇c(µ) is standard.
On the other hand, for boundary points, we use the one which is given in Section 2.1. That is, for
each µ in the boundary of ∆(Ω) with ∂c(µ) 6= ∅, we take a sequence of full-support beliefs (µk)

∞
k=1,

and we define ∇c(µ) := limk→∞∇c(µk). It follows from Lemma A1 that this limit is the same
for all sequences of full-support beliefs that converge to µ, and therefore ∇c(µ) is well-defined.
Moreover, by construction ∇c is continuous in ∆(Ω).

Then, we define the act f bπ ∈ RΩ by

f bπ(ω) := b(ω)− min
t∈Aπ

t(ω) (8)

Notice that by continuity of ∇c together with the fact that supp(π) is compact, it follows that Aπ
is compact too. Hence, the minimum in the previous definition always exists, and a fortiori f bπ is
well-defined. Finally, we are ready to introduce the subset of acts

Abπ := Aπ + f bπ. (9)

Obviously, Abπ is compact, and therefore it is a menu in A. The construction of f bπ and Abπ is
illustrated in Figure 3.

Theorem 3. For any signal π ∈ Π1(µP ) and liability constraint b ∈ RΩ, we have

Eπ′(φAbπ) ≤ Eπ′(φA), (10)

for all A ∈ A that implement π, and all optimal signals π′ ∈ ΠA(µP ).

Corollary 1. For any signal π ∈ Π2(µP ) and liability constraint b ∈ RΩ, we have

Eπ(φAbπ) ≤ Eπ(φA), (11)

for all A ∈ A that strictly implement π.
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f bπ(ω0) f bπ(ω1)

Figure 3: Constructing a cheapest menu: First, we take menu Aπ = {tL, tH} containing the
tangents at the two posteriors in the support of π. Then, using Equation (8), we construct f bπ as
the difference between the liability constraint b(ω) and the cheapest tangent min{tL(ω), tH(ω)} at
each state ω ∈ Ω. Finally, using Equation (9), we add f bπ to each act in Aπ to obtain the desired
menu Abπ = {aL, aH}.

The proof of the previous corollary is omitted as it follows trivially from the preceding theorem,
by simply noticing that π is the only optimal signal for any menu that strictly implements π itself.
Hence, the last quantifier in Theorem 3 is trivially satisfied.

Let us illustrate the previous result in the context of the example in Figure 3. Suppose that we
want to strictly implement signal π with supp(π) = {µL, µH} in the cheapest possible way subject
to the liability constraint imposed by b. As we have already discussed in the previous section,
the two ingredients of a menu that strictly implements π is a collection of tangents of c and a
hyperplane LA that is added to each of these tangents in order to satisfy the liability constraint.

Starting with the first ingredient, we obtain the menu Aπ = {tL, tH} that strictly implements
π. The construction of this menu reflects the incentives that are needed in order to guarantee that
the expert will pick π, which is why it satisfies the incentive-compatibility constraint. Then, going
to the second ingredient, we add the act f bπ in order to, not only satisfy the individual rationality
constraint, but actually to make it binding.

Remark 3. Continuing on building analogies with mechanism design (see Remark 1), the selection
of f bπ among the infinitely many linear functions that can be added to Aπ in an attempt to satisfy
the liability condition, can be seen as the equivalent of revenue maximization by the principal. /

Remark 4. The expert’s cost function is invariant to adding a constant to the function c. Of
course, such addition does not affect Abπ. This is because the same constant will be eventually
subtracted from f bπ, and therefore we will end up with the same cheapest menu eventually. /
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3.2. Cost of proxy attention

Henceforth, for each π ∈ Π1(µP ) and each liability constraint b ∈ RΩ, we define the cost for proxy
attention (abbrev., proxy cost) of signal π by

K(π) := Eπ(φAbπ), (12)

The reason we refer to K(π) as the cost of proxy attention because this is the (minimum) cost that
the principal must pay in order to contract an agent who acts as a proxy in acquiring information
and reporting the posterior.

The previous formula holds also for signals that can be strictly implemented. It is not difficult
to show that the proxy cost of a signal has the following elegant characterization.

Theorem 4. For a liability constraint b ∈ RΩ, the proxy cost of signal π ∈ Π1(µP ) is given by

K(π) = Eπ(c) + EµP (f bπ). (13)

This last result provides a microeconomic foundation for the proxy cost of information, in the
sense that K(π) is the expert’s minimum willingness to accept for π under the constraints imposed
by the primitives by the cost function c and the liability constraint b. Importantly, the supply side
(viz., the expert’s willingness to accept) is disentangled from the demand side (viz., the principal’s
willingness to pay for information). The later will be formally introduced down the stretch.

The intuition behind this characterization is quite obvious: if information acquisition is dele-
gated to the expert, the (minimum) total cost K(π) that the principal will eventually incur can be
decomposed into the production (attention) cost Eπ(c) that the expert will have to incur himself
and eventually transfer to the principal, plus the information rent EµP (f bπ) that the expert will
charge the principal, exploiting the fact that the principal cannot verify the signal or its realization.

For now, let us state some basic results that follow directly from the previous characterization
result.

Corollary 2. For a binary state space, K is strictly increasing in the Blackwell order.

Intuitively, in a binary state space, an increase in the Blackwell informativeness of the signal
has two effects, both of them going in the same direction, i.e., both the production cost and the
information rent from Theorem 4 will increase, and a fortiori the overall proxy cost will increase.

Remark 5. (Not necessarily increasing proxy cost of information with respect
to the Blackwell order). Surprisingly, the previous result does not carry over to state
spaces with larger cardinality. The reason is that the posterior beliefs are not aligned with the
extreme points of the simplex. As a result, the second term in (13) could be significantly higher
for the less informative signal, thus making the function K not necessarily increasing with respect
to the Blackwell order. The following example illustrates such a case. /

Example 1. Take the state space Ω = {ω1, ω2, ω3} together with the prior µP (ω1) = µP (ω2) = ε/2
and µP (ω3) = 1−ε for some ε ∈ (0, 1). Consider the perfectly informative signal π∗, as well as the
signal π that puts probability 1− ε to [ω3] and probability ε to µ0 = (1

2
× ω1,

1
2
× ω2). So, let us

show that there exists a strictly convex function c such that K(π) > K(π∗), although obviously π∗

is strictly more informative than π. The way we proceed is by defining a hyperplane for each of the
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four relevant posteriors, viz., the three extreme points [ω1], [ω2], [ω3] as well as µ0. In particular,
we have:

t[ω1](µ) = 4µ1 + µ2 + 9µ3,

t[ω2](µ) = µ1 + 4µ2 + 9µ3,

t[ω3](µ) = µ1 + µ2 + 10µ3,

tµ0(µ) = 3.

Note that for each of the four posteriors, the corresponding hyperplanes lies strictly higher com-
pared to the other three. As a result, there exists a strictly convex function c : R3 → R, such that
the respective hyperplane supports c at the corresponding posterior. An example, take the set of
relevant beliefs M = {µ0, [ω1], [ω2], [ω3]}, and let the strictly convex cost function be given by

c(µ) := max
ν∈M

{
tν(µ) + ‖µ− ν‖2

}
.

Then, using formula (13) with the no-liability condition (i.e., b = 0), we obtain

K(π∗) = 4ε+ 10(1− ε)︸ ︷︷ ︸
Eπ∗ (c)

−ε− 9(1− ε)︸ ︷︷ ︸
EµP (fb

π∗ )

= 3ε+ (1− ε),

K(π) = 3ε+ 10(1− ε)︸ ︷︷ ︸
Eπ(c)

−ε− 3(1− ε)︸ ︷︷ ︸
EµP (fbπ)

= 2ε+ 7(1− ε).

Finally, it is not difficult to verify that for sufficiently small ε, we get K(π∗) < K(π). /

The general idea is that, unless the state space is binary, we cannot guarantee that the infor-
mation rent is increasing as Blackwell informativeness increases. In fact, there are cases, where it
offsets the production costs. In such cases, the proxy cost decreases as Blackwell informativeness
goes up.

Corollary 3. K is not posterior-separable.

The last result holds because EµP (f bπ) is equal to
∫

∆(Ω)
Eµ(f bπ) dπ, and crucially Eµ(f bπ) does

not depend only on µ, but also on the other posteriors in the support of π, i.e., the posteriors
cannot be separated.8 Intuitively, the production cost is posterior-separable, but the information
rent is not. As a result, the overall proxy cost is not posterior-separable.

The last two points (Remark 5 and Corollary 3) are quite interesting as they show that, from the
principal’s point of view, the cost of information is qualitatively very different when information
acquisition is carried out by an expert (like in our model) compared to situations where it is
carried out by the principal herself (like in standard models of information acquisition).

3.3. Welfare analysis

With the characterization of the proxy cost of a signal at hand, we can identify the expert’s
minimum surplus from procuring signal π. This is obviously equal to

S(π) := K(π)− C(π). (14)

Then, it follows directly from Theorem 4 that S(π) has the following elegant characterization.

8We are grateful to an anonymous referee for suggesting this point.
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Corollary 4. For signal π ∈ Π1(µP ) and liability constraint b ∈ RΩ, the expert’s guaranteed
surplus is given by

S(π) = EµP (f bπ) + c(µP ). (15)

In principle, it is not surprising that the expert’s expected surplus is always strictly positive: a
similar conclusion is drawn in problems with limited liability (e.g., in principal-agent models with
moral hazard and adverse selection).

Whenever the liability constraint is non-negative (i.e., b ≥ 0), the expert’s surplus is always
positive in our case is because the principal can verify neither the signal she is buying nor the
realized posterior (i.e., information is unverifiable). Thus, the principal compensates the lack
of verifiability with incentive-compatibility. However, the incentives that are needed in order to
guarantee that the expert will indeed choose the signal π are exogenously given and the principal
cannot do anything to affect them. Thus, she always ends up paying a guaranteed premium to
the expert for the traded signal, in relation to what she would have paid him if she could monitor
his information-acquisition process and verify the posterior that he would have formed himself.
Such conclusion also follows from the (similar) analysis of Rappoport and Somma (2017).

Corollary 5. For a binary state space, S is strictly increasing in the Blackwell order.

This last result follows again from the fact that EµP (f bπ) is strictly increasing in the Blackwell
order (see proof of Corollary 2). However, once again, for larger cardinality the result no longer
holds. For instance, in Example 1, the expert’s guaranteed surplus for signal π is larger than the
guaranteed surplus for the perfectly informative signal.

3.4. Comparative statics

How sensitive is our analysis to changes in the main fundamental parameter of our model, the
expert’s cost function? In order to make such comparison, we focus on the family of cost functions

C := {κc | κ > 0}, (16)

for some strictly convex c. For example let C be the class of entropic cost functions. One inter-
pretation is that lower κ corresponds to cheaper information acquisition technology, and a fortiori
to higher level of expertise.

Can we then conclude that higher level of expertise leads to a higher compensation for π?
Or to higher guaranteed surplus for the expert? In other words, does the expert internalize the
benefits of his higher expertise level? This turns out not be the case: for any given signal, increased
competence of the expert leads to a lower price for the principal, as well as to a lower guaranteed
surplus for the expert himself.

Corollary 6. Within the class C, for any signal π ∈ Π1(µP ), the following hold:

(a) The proxy cost K(π) is strictly increasing with respect to κ.

(b) The expert’s guaranteed surplus S(π) is strictly increasing with respect to κ.

To better understand the result, denote by Kκ(π) and Sκ(π) the proxy cost and the expert’s
guaranteed surplus for signal π given the parameter κ > 0. Then, by (8) and (13), we have

Kκ(π) = EµP (b) + κ
(
Eπ(c)− EµP

(
min
t∈Aπ

t
))
, (17)
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where the second component that is multiplied by κ is strictly positive (by strict convexity of c),
and therefore Kκ(π) is linearly increasing in κ. Likewise, by (14), we have

Sκ(π) = EµP (b) + κ
(
c(µP )− EµP

(
min
t∈Aπ

t
))
,

where once again the second component that is multiplied by κ is strictly positive (by strict
convexity of c), and therefore Sκ(π) is linearly increasing in κ. Intuitively, the incentives induced
by the variable payment become stronger, as c becomes “more convex”.

4. Endogenized signals

So far, we have considered the signal π that the principal wants to acquire as an exogenously given
primitive. Let us now relax this assumption by endogeneizing π. To this end, assume that there
is a downstream choice to be made from a compact set X ⊆ RΩ, after signal π is realized and the
expert having picked some action a from the menu that was offered to him by the principal. This
setting naturally incorporates two classes of models:

• Delegated information acquisition: the principal chooses from X herself (e.g., Car-
roll, 2019; Deimen and Szalay, 2019).

• Delegated persuasion: the choice is made by a third agent, viz., the receiver. This
setting is similar to costly Bayesian persuasion (Gentzkow and Kamenica, 2014; Matysková
and Montes, 2023), with the difference being that information acquisition is not carried out
by the sender herself, but rather by an expert.

In either case, the crucial assumption is that the expert does not have any stakes in the eventual
choice from X, and only cares about his own choice from A.

The principal’s indirect payoff function is denoted by φX(µ) for each µ ∈ ∆(Ω). In our first
class of models, where the principal chooses himself, his indirect utility function is given by

φX(µ) := max
x∈X

Eµ(x). (18)

In the second class of models the receiver will choose some xµ ∈ arg maxx∈X Eµ(v(x)), where
v : X → RΩ is the receiver’s (continuous) payoff function. Aligned with the Bayesian persuasion
literature, whenever the receiver has multiple optimal choices, we assume that she breaks the tie
by picking the principal’s preferred choice. As a result, the principal’s indirect utility function
becomes

φX(µ) := Eµ(xµ), (19)

which, by our tie-breaking assumption, is upper semi-continuous.
Thus, for each signal π ∈ Π1(µP ), we can define the principal’s value,

VX(π) := Eπ(φX)−K(π). (20)

The principal’s optimization problem boils down to maximizing VX over Π1(µP ). Note that VX is
not defined for signals in Π(µP ) \ Π1(µP ), as such signals cannot be implemented, and therefore
from the principal’s point of view are not feasible. As a result the domain of VX is not necessarily
compact. Nevertheless, we can still establish existence of an optimal signal for the principal
(Proposition A1 in the Appendix). But more interestingly, we can also prove that there is always
an optimal signal for the principal which can be strictly implemented.
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Theorem 5. There exists some π ∈ Π2(µP ) such that VX(π) ≥ VX(π′) for all π′ ∈ Π1(µP ).

A direct consequence of the previous result is that the complexity of the principal’s optimal
signal will be bounded by the cardinality of Ω, similarly to the well-known result from the Bayesian
persuasion literature (Kamenica and Gentzkow, 2011). However, despite the striking conceptual
similarity, our proof is significantly different. The reason is that Kamenica and Gentzkow (2011)
rely on the fact that the principal’s (viz., the sender’s) indirect utility function is posterior sepa-
rable, something which no longer holds in our case (Corollary 3).

This last result allows us to significantly simplify the computation of the principal’s optimal
signal, and in many cases to obtain tractable closed form solutions that allow us to do comparative
statics.

5. Applications

In this section we will focus on some applications where our earlier characterization results yield
specific testable hypotheses and explain certain stylized facts. Throughout the section, we consider
a parsimonious model with a binary state space Ω = {ω1, ω2}, a no-liability constraint b = 0, and
an entropic cost function c = H with multiplier parameter κ = 1 for the expert.

5.1. Decentralization of information acquisition

A principal is tasked to obtain N independent data points from the same experiment. There is
a set of identical experts I, to whom data collection can be delegated. The question is how to
optimally allocate the collection of data across these experts, i.e., should the principal centralize the
information acquisition by asking few experts to obtain many data points each, or to decentralize it
by asking many experts to obtain few data points each? This question is quite common in clinical
trials where a pharmaceutical company must decide whether to delegate the data collection to few
selected hospitals or to many distinct hospitals (e.g., Masri et al., 2012, and references therein).

Let us address this question in a parsimonious setting, with a uniform prior µP (ω1) = µP (ω2) =
1/2, and the data generating process being described by a binary symmetric channel with error
probability ε < 1/2. The idea is that each data point will take the value ω1 or ω2, and it will
coincide with the true state with probability 1 − ε. A signal that yields n ≤ N independent
observations from this binary symmetric signal is denoted by πn.

Since the principal wants to obtain N independent data points in total, her problem comes
down to deciding how many observations from each i ∈ I to request from each expert. That
is formally, the principal must request ni ∈ {0, 1, . . . , N} data points from each i ∈ I, so that∑

i∈I ni = N . The question then becomes: which is the optimal allocation (ni)i∈I of data points
across experts, so that she minimizes her cost?

Proposition 1. For sufficiently large noise parameter ε, it is the case that K(πn) > nK(π1) for
every n > 1. Hence, the principal strictly prefers to request a single data point from each one of
N distinct experts.

A very interesting implication of our result is that, in our context, superadditive cost for
information can naturally emerge. This is the first model to the best of our knowledge with this
feature, which is in contrast to other cost functions that are either subadditive (Shannon, 1948)
or additive (Pomatto et al., 2023). Intuitively the driving force behind this difference is the fact
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that c becomes very steep as we approach the boundary. As a result, the cost of multiple signals
coming from the same source increases non-linearly.

5.2. High-stakes decisions

Suppose that the principal wants to make a downstream decision from a set X = {(0, 0), (x,−x)}
for some x > 0, as in Section 4. The strength of the principal’s stakes are described by the
magnitude of x. Suppose for instance that x is the size of an investment that the principal is
considering to make, while ω1 is the good state where the investment pays out and ω2 is the bad
state where it does not. Clearly, regardless how large the stakes are, the principal wants to invest
if and only if the probability of the good state is larger or equal than 50%. We assume that the
prior belief µP is uniformly distributed.

Suppose that it is uniformly more costly for the principal to produce a signal than for the
expert in the sense that we defined in Section 3.4, i.e., the principal’s cost parameter is κ̃ > κ = 1.
Let π be the principal’s optimal signal when information acquisition is delegated to the expert (as
in Section 4), and π̃ be the principal’s optimal signal when she acquires information herself (as in
a standard costly information acquisition setting). We say that the principal prefers to acquire
information herself if and only if

VX(π) ≤ Eπ̃(φX)− Eπ̃(c̃) + c̃(µP ), (21)

where the left hand side is the principal’s net expected payoff if she delegates information acquisi-
tion to an expert, whereas the right hand side is the principal’s net expected payoff if she acquires
her optimal signal herself.

Proposition 2. For every κ̃ > κ, there is some x0 > 0, such that for every x > x0 the principal
prefers to acquire information herself.

The previous result suggests that no matter how much more skilled the expert is in acquiring
information, when the stake becomes large, the principal will always prefer to acquire information
herself. Consider for instance a high-end R&D process: companies often outsource some of their
activities, but when the stakes become large, they would rather keep it in house. Common
wisdom suggests that this is because of intellectual property concerns. However, here we propose
an alternative explanation: high stakes decisions often require very informative signals, the cost
of which increases much faster when delegated to experts compared to when acquired by the
principal herself. As a result, signals that are acquired via the expert are too expensive in such
cases.

6. Conclusion

In this paper we studied costly information acquisition by an expert on behalf of a principal who
can only observe the state realization ex post. Crucially, neither the signal nor its realization
are contractible, meaning that the expert can only be incentivized by means of menus of state-
contingent payments (i.e., acts). In particular, when the expert faces a menu, he is confronted
with a tradeoff: information is valuable for him as it helps him make a better choice from the
menu, but at the same time it is costly. Thus, the principal’s problem boils down to designing a
menu that will implement her desired signal, i.e., a menu such that the expert’s optimal solution
is to pick the principal’s desired signal.

20



In our first set of results, we provide a full characterization of the set of menus that implement
(resp., strictly implement) each signal. Then, we provide a closed form formula that computes the
cheapest such menus for the principal, which we call proxy cost for the specific signal. Surprisingly,
this novel type of cost for information does not satisfy in general many standard properties, such
as for instance Blackwell monotonicity, i.e., it may be the case that more informative signals are
cheaper for the principal to implement.

In the second part of the paper, we enrich our setting to study the full agency problem. In
particular, we introduce a downstream decision to be made, after the expert’s choice (from the
menu) has been observed, but before the state has been realized. This framework is flexible enough
to accommodate a wide range of applications, like for instance delegated information acquisition or
delagated persuasion. Despite the generality of the setting, we manage to show that it is without
loss of generality to restrict attention to strict implementation, and a fortiori to signals whose
complexity is bounded by the cardinality of the state space. This implies that the problem is very
tractable, and therefore has the potential to be used in many applications.

A. Proofs

Lemma A1. Take some µ in the boundary of ∆(Ω) such that ∂c(µ) 6= ∅. Then there is a vector
α ∈ Rn such that, for every sequence (µk)

∞
k=1 of full-support beliefs that converges to µ, we have

lim
k→∞
∇c(µk) = α.

Moreover, it is the case that α ∈ ∂c(µ).

Proof. By continuous differentiability of c, since ∂c(µ) 6= ∅, there exists some ε > 0 such that
∂c(ν) 6= ∅ for every ν ∈ B := {ν ∈ ∆(Ω) : ‖ν − µ‖ ≤ ε}. Then, by the Whitney Extension
Theorem for C1 functions, there exists some open set U ⊇ B and a continuously differentiable
extension c̄ : U → R of c (Azagra and Mudarra, 2017, Thm. 1.10). Note that µ belongs to the
interior of U , meaning that the gradient ∇c̄(µ) exists and is henceforth denoted by α. Moreover,
by c̄ = c in B, it follows that α ∈ ∂c(µ). Furthermore, by continuous differentiability of c̄ we have
∇c(µk)→ α, which completes the proof.

Proof of Theorem 1. Part (a). (a) Necessity: Take an arbitrary menu A ∈ A, and an op-
timal signal π ∈ ΠA(µP ). Consider a linear functional LA : ∆(Ω)→ R that supports the concave
function ψA at µP . Then, by concavity of ψA, it is the case that

LA(µ) ≥ ψA(µ) ≥ ψA(µ) (A.1)

for all µ ∈ ∆(Ω). By optimality of π, equalities hold at all µ̃ ∈ supp(π). Hence, we have

c(µ) ≥ φA(µ) + LA(µ). (A.2)

Finally, for any µ̃ ∈ supp(π), pick an act ã ∈ arg maxa∈A Eµ̃(a). Thus, we get

c(µ) ≥ Eµ(ã) + LA(µ), (A.3)

at all µ ∈ ∆(Ω), with equality holding at µ̃. Hence, c is subdifferentiable at µ̃.

Sufficiency: Let c be subdifferentiable at every µ̃ ∈ supp(π), and define the menu

Aπ := {∇c(µ̃)|µ̃ ∈ supp(π)}. (A.4)
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By ∇c being continuous and supp(π) being closed, we have that Aπ is compact, and therefore it
is a well-defined menu. Moreover, by construction, we have φAπ(µ) ≤ c(µ) with equality holding
if and only if µ ∈ supp(π). As a result,

Eπ′(ψAπ) ≤ 0, (A.5)

with equality holding if and only if µ ∈ supp(π′). Hence, we obtain

Eπ′(ψAπ) ≤ Eπ(ψAπ) (A.6)

meaning that π is implemented by Aπ.

Part (b). Sufficiency: Take the menu Aπ that we defined in (A.4), which implements π. Since
the points in supp(π) are linearly independent vectors in RΩ, there is a unique convex combination
of points in supp(π) that yield the prior µP . Thus, the only signal in Π(µP ) that puts probability
1 to supp(π) is π itself, meaning that Aπ strictly implements π.

Necessity: Let π be strictly implemented by some A. By Part (a) above, (P1) holds. So, let us
prove (P2): we proceed by contradiction, starting with the assumption that the vectors in supp(π)
are not linearly independent. We distinguish two cases:

• All points in supp(π) are extreme points in conv(supp(π)). This means that | supp(π)| > |Ω|.
But then, by Carathéodory’s theorem, there exists a strict subset M ( supp(π) such that
µP ∈ conv(M).

• There exists some µ ∈ supp(π) which is not an extreme point in conv(supp(π)). Thus, if we
take M := supp(π) \ {µ}, it will be the case that µP ∈ conv(M).

So in either case, we can find a signal π′ ∈ Π(µP ) with supp(π′) = M ( supp(π). This signal will
also be optimal, thus reaching a contradiction.

Proof of Theorem 2. Part (a). Fix an arbitrary π ∈ Π1(µP ).

Sufficiency: Take a menu A ∈ A and a linear functional LA : ∆(Ω)→ R, such that the (convex)
function φA − LA supports c at M ⊇ supp(π). Thus, we obtain φA(µ)− LA(µ)− c(µ) ≤ 0 for all
µ ∈ ∆(Ω), with equality holding if and only µ ∈M . So, it is the case that

Eπ′(ψA) = Eπ′(φA − c) ≤ Eπ′(LA) = LA(µP ) (A.7)

with equality holding if and only if supp(π′) ⊆ M . Therefore, we have π ∈ ΠA(µP ), i.e., π is
implemented by A.

Necessity: Let π be implemented by A. Take a tangent LA of ψA at µP . Recall from the proof
of Theorem 1.(a) that φA(µ) + LA(µ) ≤ c(µ), with equality holding at every µ ∈ supp(π). The
latter implies that φA + LA supports c.

Part (b). Fix an arbitrary π ∈ Π2(µP ).

Sufficiency: Repeat the steps of Part (a) for M = supp(π). Since there is no signal π′ ∈
Π2(µP ) \ {π} with supp(π′) ⊆M , we conclude that menu A strictly implements π.

Necessity: Repeat the steps of Part (a), noticing that the only posteriors such that ψA(µ) =
ψA(µ) are those in supp(π), and therefore φA − LA support c at supp(π).
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Proof of Theorem 3. Fix some π ∈ Π1(µP ). Using the same steps as in the proof of sufficiency
in Theorem 1, we show that menu Aπ = {∇c(µ)|µ ∈ supp(π)} implements π. By Theorem 2,
menu Abπ = Aπ + f bπ implements π.

Take another A ∈ A that satisfies the liability constraint b and implements π. Then, again by
Theorem 2, there exists some M ⊇ supp(π) and some Tµ ⊆ ∂c(µ) for each µ ∈ M , and some
f ∈ RΩ, such that menu A can be rewritten as

A = {t+ f |t ∈ Tµ for some µ ∈M}. (A.8)

We will now proceed in three steps. As a first step, take the alternative menu

A1 = {∇c(µ) + f |µ ∈M}. (A.9)

that we obtain by replacing Tµ with the singleton {∇c(µ)} for each µ ∈ M . By Theorem 2, the
last two menus yield the same set of optimal signals, i.e., ΠA(µP ) = ΠA1(µP ). Moreover, observe
that, for every µ ∈ M , it is the case that φA(µ) = φA1(µ). As a result, for every π′ ∈ ΠA(µP ) it
will be the case that

Eπ′(φA) = Eπ′(φA1). (A.10)

As a second step, remove from A1 the tangents that correspond to posteriors that are not in
supp(π), thus obtaining the new menu

A2 = {∇c(µ) + f |µ ∈ supp(π)}. (A.11)

Since A2 ⊆ A1, it will be the case that φA2 ≤ φA1 . Hence, for each π′ ∈ ΠA(µP ) we get

Eπ′(φA2) ≤ Eπ′(φA). (A.12)

Finally, as a third step, we replace f with f bπ in A2, thus obtaining Abπ. Observe that for any
µ ∈ supp(π) at the boundary of ∆(Ω), our definition of ∇c(µ) implies Eµ̃(t) ≤ Eµ̃(∇c(µ)) for
every t ∈ ∂c(µ), with equality holding if µ̃ = µ. This is because c is strictly convex and ∇c(µ) is
the flattest among all tangents at µ. Thus, by setting µ̃ := [ω], we obtain

f bπ(ω) = b(ω)− min
t∈Aπ

t(ω)

≤ b(ω)− min
t∈A1−f

t(ω)

= b(ω)−min
t∈A1

t(ω) + f(ω)

≤ f(ω).

The first equality is by definition of f bπ, the first inequality is due to Aπ = A2 − f ⊆ A1 − f , and
the second inequality is due to A1 satisfying the liability condition. Therefore, we have

Eπ′(φAbπ) = Eπ′(φAπ) + EµP (f bπ)

= Eπ′(φA2)− EµP (f) + EµP (f bπ)

≤ Eπ′(φA2),

which completes the proof.

23



Proof of Theorem 4. The result follows directly from the following chain of equalities

Eπ(φAbπ) = Eπ(φAπ) + Eπ(φ{fbπ})

= Eπ(φAπ) + EµP (f bπ)

= Eπ(c) + EµP (f bπ),

where the first equality follows from φAbπ = φAπ +φ{fbπ}, the second equality holds because φ{fbπ} is
linear and π is a mean-preserving distribution, and the third inequality holds because φAπ supports
c at supp(π).

Proof of Corollary 2. For any µ ∈ ∆(Ω), the gradient of c is given by ∇c(µ) = (t0µ, t
1
µ), where

t0µ = c(µ1)− c′+(µ1)µ1,

t1µ = c(µ1) + c′−(µ1)(1− µ1),

where µ1 := µ(ω1). So, for two beliefs µ, ν ∈ ∆(Ω) such that µ1 > ν1, we obtain:

t0µ − t0ν =
(
c(µ1)− c(ν1)

)
−
(
c′+(µ1)µ1 − c′+(ν1)ν1

)
< c′+(µ1)(µ1 − ν1)−

(
c′+(µ1)µ1 − c′+(ν1)ν1

)
< c′+(µ1)(µ1 − ν1)−

(
c′+(µ1)µ1 − c′+(µ1)ν1

)
= 0,

with the first inequality following from strict convexity of c, and the second inequality following
from c′+(µ1) > c′+(ν1) (Aliprantis and Border, 1994, Thm 7.22). Likewise, we prove

t1µ − t1ν > 0.

Let µL and µH be the two extreme posteriors in the support of π, i.e.,

µ1
L ≤ µ1 ≤ µ1

H

for all µ ∈ supp(π). Hence, it is the case that

min
t∈Aπ

t(ω0) = t0µH and min
t∈Aπ

t(ω1) = t1µL .

Now, take another signal π̃ such that π � π̃, meaning that the extreme posteriors µ̃L and µ̃H in
the support of π̃ belong to conv({µL, µH}). Therefore, we have t0µH ≤ t0µ̃H and t1µH ≤ t1µ̃H , and a
fortiori we obtain EµP (f bπ) ≥ EµP (f bπ̃). Moreover, by Blackwell’s theorem, we have Eπ(c) > Eπ̃(c).
Plugging the two inequalities into (13) directly yields K(π) > K(π̃).

Proof of Corollary 3. The proof is based on the fact that K is posterior-separable if and only
if it satisfies dynamic consistency (Tsakas, 2020). In the binary state space Ω = {ω0, ω1}, consider
the following compound signal: first take the signal π̃ with supp(π̃) = {µ̃L, µ̃H}, and then given
each posterior µ̃k ∈ supp(π̃) take the signal πk ∈ Π(µ̃k) with supp(πk) = {µL, µH}, where

µ1
L < µ̃1

L < µ1
P < µ̃1

H < µ1
H

with µ1 := µ(ω1) for any µ ∈ ∆(Ω). This compound signal is equivalent to the signal

π(·) = π̃(µ̃L)πL(·) + π̃(µ̃H)πH(·).
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Nevertheless, since π, πL and πH have the same support, it will be the case that f bπ = f bπL = f bπH .
As a result, we will have

K(π) = Eπ(c) + EµP (f bπ)

= π̃(µ̃L)
(
EπL(c) + Eµ̃L(f bπL)

)
+ π̃(µ̃H)

(
EπH (c) + Eµ̃H (f bπH )

)
= π̃(µ̃L)K(πL) + π̃(µ̃H)K(πH)

< π̃(µ̃L)K(πL) + π̃(µ̃H)K(πH) +K(π̃).

This implies that K does not satisfy dynamic consistency. Hence, it is not posterior separable.

Proposition A1. The function VX achieves a maximum in Π1(µP ).

Proof . First, we will prove that VX is upper semi-continuous in Π1(µP ). Take a sequence (πk)
∞
k=1

converging to π ∈ Π1(µP ). Then, we have

lim
k→∞

VX(πk) = lim
k→∞

Eπk(φX − c)− lim
k→∞

EµP (f bπk) (A.13)

≤ Eπ(φX − c)− lim
k→∞

EµP (f bπk), (A.14)

= Eπ(φX − c)− EµP (f bπ) (A.15)

= VX(π),

with (A.13) following from Theorem 4; inequality (A.14) following from φX − c being upper semi-
continuous in ∆(Ω) (Aliprantis and Border, 1994, Thm. 15.5); and (A.15) following from Lemma
A1. Let us elaborate on this last step. We have continuously extended ∇c(µ) from the interior
of ∆(Ω) to all boundary points where c is subdifferentiable. Since all signals in the sequence (πk)
and its limit π have support in this set of beliefs, it is the case that f bπk → f bπ, and a fortiori
EµP (f bπk)→ EµP (f bπ).

Finally, let us extend VX from Π1(µP ) to Π(µP ), by defining VX(π) = −∞ for every π ∈
Π(µP ) \ Π1(µP ). Take a sequence (πk) in Π1(µP ) converging to some π ∈ Π(µP ) \ Π1(µP ). Then,
we obtain

lim
k→∞

VX(πk) = lim
k→∞

Eπk(φX − c)− lim
k→∞

EµP (f bπk) = −∞,

which follows by φX − c being bounded, combined with the fact that EµP (f bπk)→∞. Hence, the
extended VX : Π(µP )→ [−∞,∞) is upper semi-continuous.

Therefore, by compactness of Π(µP ), the extended function VX achieves a maximum. Finally,
since VX(π) > −∞ if and only if π ∈ Π1(µP ), the maximum is achieved in Π1(µP ).

Proof of Theorem 5. Suppose π′ ∈ Π1(µP ) is a maximizer of VX , which by Proposition A1
always exists. Using Theorem 4, it is the case that

VX(π′) = Eπ′(φX − c)− EµP (f bπ′). (A.16)

Then, there exists some π ∈ Π2(µP ) with supp(π) ⊆ supp(π′), such that

Eπ(φX − c) ≥ Eπ′(φX − c). (A.17)

The latter follows from the fact that there exists some M ⊆ supp(π′) satisfying (P2), and some
signal π with supp(π) = M such that (A.17) is satisfied. At the same time, since supp(π) ⊆
supp(π′), it will also be the case that Aπ ⊆ Aπ′ , and therefore by Equation (8) we obtain f bπ ≤ f bπ′ ,
and a fortiori

EµP (f bπ) ≤ EµP (f bπ′). (A.18)

Finally, putting (A.17) and (A.18) together yields VX(π) ≥ VX(π′).
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Proof of Proposition 1. Given the signal πn, let

µnk :=
(1− ε)kεn−k

εk(1− ε)n−k + (1− ε)kεn−k
, (A.19)

be the posterior probability attached to ω1 if the realized dataset contains k times ω1 and n − k
times ω2. Using Equation (13), we obtain

K(πn) = Eπ(c) + EµP (f bπ)

> c(µP )− log(µn0 )

= log
1

2
− log

εn

εn + (1− ε)n
.

Applying again Equation (13) for n = 1, we obtain

K(π1) = (1− ε) log
1− ε
ε

. (A.20)

Now, let us define the difference

∆(ε) := K(πn)− nK(π1), (A.21)

and observe that as ε becomes large, we will have

lim
ε→1/2

∆(ε) > 0. (A.22)

Hence, there is a neighborhood of ε close to 1/2, where K(πn) > nK(π1).

Proof of Proposition 2. By Theorem 5, signal π puts positive probability to two symmetric
posteriors, that put probability µ1

x and 1 − µ1
x to ω1 respectively, for some µ1

x > 1/2. Hence,
the principal’s optimal signal (when she delegates information acquisition to the expert), is the
maximizer of the function:

VX(π) := µ1
xx︸︷︷︸

Eπ(φX)

−µ1
x log

µ1
x

1− µ1
x︸ ︷︷ ︸

K(π)

. (A.23)

Taking first order condition yields

x = 1 +
µ1
x

1− µ1
x

+ log
µ1
x

1− µ1
x

. (A.24)

Hence, limx→∞ µ
1
x = 1. So, there exists some x0 > 0 such that for all x > x0,

K(π) > κ̃ log 2 ≥ Eπ(c̃)− c̃(µP ). (A.25)

Finally, it is obviously the case that

VX(π) = Eπ(φX)−K(π)

< Eπ(φX)− Eπ(c̃) + c̃(µP )

≤ Eπ̃(φX)− Eπ̃(c̃) + c̃(µP )

which completes the proof.
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