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Abstract

We study the target projection dynamic, a model of learning in normal form games. The dy-

namic is given a microeconomic foundation in terms of myopic optimization under control

costs due to a certain status-quo bias. We establish a number of desirable properties of the

dynamic: existence, uniqueness, and continuity of solution trajectories, Nash stationarity, pos-

itive correlation with payoffs, and innovation. Sufficient conditions are provided under which

strictly dominated strategies are wiped out. Finally, some stability results are provided for

special classes of games.

1. Introduction

The most well-known and extensively used solution concept in noncooperative game theory is the

Nash equilibrium. The question how players may reach such equilibria is studied in a branch of

game theory employing dynamic models of learning and strategic adjustment. The main dynamic

processes in the theory of strategic form games include the replicator dynamic (Taylor and Jonker,
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1978), the best-response dynamic (Gilboa and Matsui, 1991), and the Brown-Nash-von Neumann

(BNN) dynamic (Brown and von Neumann, 1950). Sandholm (2005) introduced a definition for

well-behaved evolutionary dynamics through a number of desiderata (see Theorem 3.2 for precise

definitions):

EXISTENCE, UNIQUENESS, AND CONTINUITY OF SOLUTIONS to the specified dynamic

process,

NASH STATIONARITY: the stationary points of the process coincide with the game’s

Nash equilibria,

POSITIVE CORRELATION: roughly speaking, the probability of “good” strategies in-

creases, that of “bad” strategies decreases.

He showed that — unlike the replicator and the best-response dynamics — the family of BNN or

excess-payoff dynamics is well-behaved.

In the present paper we analyze the target projection dynamic that was mentioned only briefly

in the same paper by Sandholm (2005, pp. 166–167). Our main results include the following:

Although the dynamic has a certain geometric appeal, Sandholm (2005, p. 167) wrote: “Un-

fortunately, we do not know of an appealing way of deriving this dynamic from a model of indi-

vidual choice.” This is remedied in Theorem 3.1, which provides a microeconomic foundation for

the target projection dynamic. Following the control cost approach (Van Damme, 1991; Mattsson

and Weibull, 2002; Voorneveld, 2006), we show that it models rational behavior in a setting where

the players have to exert some effort/incur costs to deviate from incumbent strategies. In other

words: the target projection dynamic is a best-response dynamic under a certain status-quo bias.

The fact that the players face control costs makes their adjustment process slower. This makes

sense, since they are averse — to some extent — to deviations from their current behavior. How-

ever, despite the fact that their learning mechanism is quite conservative, the target projection

dynamic is well-behaved in the sense described above. It also satisfies an additional property:

INNOVATION: if some player is not at a stationary state and has an unused best re-

sponse, then a positive probability is assigned to this best response.

This is established in Theorem 3.2. These properties imply (Hofbauer and Sandholm, 2007) that

there are games where strictly dominated strategies survive under the target projection dynamic.

Nevertheless, we show that strictly dominated strategies are wiped out if the “gap” between the

dominated and dominant strategy is sufficiently large (Proposition 3.1) or if there are only two

pure strategies (Proposition 3.2).
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Like most other dynamics, the target projection dynamic belongs to family of uncoupled dy-

namics, where the behavior of one player is independent of payoffs to other players. Therefore,

the process cannot converge to Nash equilibrium in all games (Hart and Mas-Colell, 2003). Nev-

ertheless, some special cases can be established:

• sufficiently close to interior Nash equilibria of zero-sum games, the (standard Euclidean)

distance to such an equilibrium remains constant (Corollary 4.1),

• strict Nash equilibria are asymptotically stable (Proposition 4.2),

• as are evolutionary stable strategies (Maynard Smith, 1982) if they are interior (Corollary

4.2) or the game is 2 × 2 (Proposition 4.3).

The first two points rely on the analysis of stable games in Hofbauer and Sandholm (2008). The

analysis is facilitated by the fact that in certain cases (see Proposition 3.3) the target projection

dynamic coincides with the projection dynamic extensively studied by Lahkar and Sandholm

(2008) and Sandholm et al. (2008).

The paper is structured as follows. Section 2 specifies notation, recalls the framework of learn-

ing in normal form games, and provides some useful results on projections. Section 3 presents

the target projection dynamic, including its control-cost motivation, establishes that it is well-

behaved, and contains our results on strictly dominated strategies. Section 4 studies the target

projection dynamic in special classes of games.

2. Notation and preliminaries

2.1. Learning in normal form games

Consider a finite normal form game G = (N, (Ai)i∈N, (ui)i∈N) defined as usual: N = {1, . . . , n}

is the set of players, Ai = {a1
i , . . . , aJi

i } is player i’s finite set of actions (pure strategies) with ai

being the typical element of Ai, and ui : A → R is i’s payoff function, where A = ×i∈N Ai is

the game’s action space. Consider i’s set of mixed strategies ∆i := {αi ∈ R
Ji
+ : ∑

Ji
j=1 α

j
i = 1},

with typical element αi = (α1
i , . . . , α

Ji
i ), and let α

j
i denote the probability that αi assigns to a

j
i .

We say that αi is completely mixed if α
j
i > 0 for all j = 1, . . . , Ji. With slight abuse of notation

we write α = (αi, α−i), where α−i = (α1, . . . , αi−1, αi+1, . . . , αn). We define the expected payoff

ui : ∆ → R as usual, where ∆ := ×i∈N∆i. Then, we rewrite i’s expected payoff as follows:

ui(α) = 〈αi, Ui(α)〉, where 〈x, y〉 := ∑
m
i=1 xiyi denotes the usual inner product of two vectors
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x, y ∈ R
m, and Ui(α) = (U1

i (α), . . . , U Ji
i (α)) is the vector of expected payoffs to player i’s pure

strategies given that everybody else plays according to α, i.e., U
j
i (α) = ui(a

j
i , α−i).

We say that αi is a best response to α if 〈αi, Ui(α)〉 ≥ 〈βi , Ui(α)〉 for all βi ∈ ∆i. If αi is a

best response to α for every i ∈ N then α is a Nash equilibrium. If the inequality is strict for

every i ∈ N then α is a strict Nash equilibrium. Obviously, strict equilibria appear only in pure

strategies. Action a
j
i strictly dominates ak

i if U
j
i (α) > Uk

i (α) for all α ∈ ∆. Then ak
i is referred to as

a dominated action.

Consider the standard framework of learning in normal form games (Börgers and Sarin, 1997;

Fudenberg and Levine, 1998; Hopkins, 2002). There is a population of individuals. Every indi-

vidual repeatedly participates in G against other individuals, always holding the same role, i.e.,

always being the same i ∈ N. The way the individuals are matched can vary according to the

model: they play against the same opponents at every period (single-matching) or they are ran-

domly matched with individuals playing the other roles (random-matching). At all periods every

player i chooses a mixed strategy αi ∈ ∆i. After having observed the own payoff and (usually) the

strategy profile α ∈ ∆, every i ∈ N adjusts the own strategy according to some updating rule α̇i,

which typically puts higher weight on more profitable strategies and less weight on the ones that

entail lower payoff. The adjustment rule describes the mechanism through which players learn

how to play in the future, given their current observations, i.e., α̇ = f (α). Dynamic processes that

do not depend on the payoff earned by the other players are called uncoupled dynamics (Hart

and Mas-Colell, 2003).

As we will see in the text following Theorem 3.1, the dynamic in this paper is most naturally

interpreted in terms of learning, i.e., with one player per role and the profile of mixed strategies

as state variable. Other dynamics come from models of evolution (some — like the best-response,

logit, and replicator dynamic — have a natural interpretation in both contexts), where there is

a population of players for each role and the state variable reflects the empirical distributions

of strategies; see Fudenberg and Levine (1998), Sandholm (2006), and Weibull (1995). In some-

what more detail, there are n populations, each with a continuum of agents: one for each player

role. Agents from the different populations are randomly matched to play the normal form game;

agents from population i choose actions from Ai. The distribution αi ∈ ∆i of actions is the pop-

ulation state. After having observed all population states and the earned payoff, individuals get

the opportunity to revise their strategies, typically in such a way that populations evolve towards

states where more profitable strategies are more popular. The expected motion of the populations

defines the corresponding evolutionary dynamic.
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2.2. Projections

This subsection contains some results on projections. In particular, Proposition 2.1 establishes a

link between maximizing a linear function and certain projection problems. Proposition 2.2 gives

a simple expression for projection onto the unit simplex. The proofs are in the Appendix.

As we have already mentioned, let 〈x, y〉 = ∑
m
i=1 xiyi denote the usual inner product of two

vectors x, y ∈ R
m. Let ‖ · ‖ denote the standard Euclidean norm, i.e., ‖x‖ = 〈x, x〉1/2. For z ∈ R,

let [z]+ := max{z, 0}.

Proposition 2.1. Let C ⊆ R
n be nonempty and convex, a ∈ R

n, c ∈ C and k > 0.

(i) The following two claims are equivalent:

(a) c solves maxx∈C 〈a, x〉

(b) c solves maxx∈C 〈a, x〉 − 1
k‖x − c‖2.

(ii) The problem in (b) reduces to projecting c + k
2 a onto C:

arg max
x∈C

〈a, x〉 −
1

k
‖x − c‖2 = arg min

x∈C
‖x − c −

k

2
a‖2. (1)

The following proposition characterizes projection onto a unit simplex.

Proposition 2.2. Let P : R
n → ∆n denote the projection on the (n − 1)-dimensional unit simplex ∆n: for

x ∈ R
n, P(x) := arg miny∈∆n ‖y − x‖.

(i) P is Lipschitz continuous.

(ii) For every x ∈ R
n the projection on ∆n can be rewritten as follows

P(x) = ([x1 + λ(x)]+, . . . , [xn + λ(x)]+), (2)

where λ(x) ∈ R is the unique solution to ∑
n
i=1[xi + λ(x)]+ = 1.

Remark 2.1. Proposition 2.2(ii) immediately implies that for all x ∈ R
n and i, j ∈ {1, . . . , n}: if

xi − xj ≥ 1, then Pj(x) = 0. ⊳

3. The target projection dynamic

The target projection dynamic, the dynamic process governing the learning mechanism that we

study in this paper, was mentioned briefly in the concluding section of Sandholm (2005, pp. 166-

167). It was originally defined in the framework of congestion networks by Friesz et al. (1994).
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Definition 3.1. Consider a normal form game (N, (Ai)i∈N, (Ui)i∈N). The target projection dy-

namic (TPD) is defined, for each i ∈ N, by the differential equation

α̇i = P∆i
[αi + Ui(α)] − αi, (3)

where P∆i
denotes the projection on ∆i with respect to the usual Euclidean distance.

The basic idea is simple and standard for most dynamic processes in game theory: the payoffs

associated with the different actions determine the direction in which their weights are changed

by reinforcing the better actions and decreasing the weight of worse ones.

In particular, under the TPD, player i ∈ N starts from current mixed strategy αi and moves in

the direction of the payoff vector Ui(α) to obtain a preliminary target point for the revised strategy.

Of course, simply running in the direction of the payoff vector Ui(α) might take you outside

the strategy simplex, but Proposition 2.2(ii) assures that projection onto the strategy simplex —

i.e., choosing the nearest feasible strategy in terms of Euclidean distance — does not affect the

order of the coordinates. See Figure 1 for illustrations of the dynamic for a player with just two

actions. The left panel involves a “standard” orthogonal projection; in the right panel, the feasible

strategy nearest the preliminary target point αi + Ui(α) involves setting the probability of playing

the second action to zero.

0

1

0 1
αi(a1

i )

αi(a2
i )

b

αi

b

αi + Ui(α)

b P∆i
(αi + Ui(α))

0

1

0 1
αi(a1

i )

αi(a2
i )

b

αi
b

αi + Ui(α)

P∆i
(αi + Ui(α))

b

Figure 1: Two examples of the target projection dynamic for a player i with two actions.

The simplest dynamic embodying the basic idea of reinforcing actions with high payoffs at the

expense of those with low ones is the best-response dynamic (Gilboa and Matsui, 1991): players

place higher weight to their best responses according to

α̇i = BRi(α) − αi, (4)
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where BRi(α) = arg maxβi∈∆i
〈βi , Ui(α)〉. In fact, Equation (4) is a differential inclusion, rather

than a differential equation, since BRi(α) need not be a singleton. In any case, as it becomes

obvious from Equation (4), players do not switch to — but towards — their best responses. That

is, the best-response dynamic involves inertia which precludes them from switching directly to

their best response.

The next theorem indicates that the TPD is essentially a best-response dynamic, albeit under

a bounded rationality assumption, involving the introduction of a certain status-quo bias. We

follow the control cost approach, which since its introduction by Van Damme (1991) in the study

of equilibrium refinements has proved to be a versatile way of providing microeconomic foun-

dations for a variety of models of strategic behavior (Hofbauer and Sandholm, 2002; Mattsson

and Weibull, 2002; Voorneveld, 2006). It does so by showing that such behavior is rational for

decision makers who have to make some effort (incur costs) to implement their strategic choices.

One intuitive way of modeling status-quo bias by player i could be as follows. Suppose that de-

viation from the current αi is costly/requires effort in the sense that by switching to a strategy

βi, player i incurs a cost of 1
2 ||βi − αi||

2: staying at the current mixed strategy is costless, whereas

large deviations, i.e., strategies further away from the current one in terms of Euclidean distance,

incur larger costs. Taking such costs into account changes the optimization problem to

max
βi∈∆i

〈βi , Ui(α)〉 −
1

2
||βi − αi||

2. (5)

Let Bi(α) ∈ ∆i denote player i’s (unique due to strict concavity of the goal function) best

response against α, i.e., the unique solution to problem (5). Subject to these assumptions, we can

now formulate the TPD as a best response dynamic:

Theorem 3.1. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game. The TPD is the best response dynamic

for the control cost problem in (5), i.e., for each i ∈ N:

α̇i = P∆i
[αi + Ui(α−i)] − αi = Bi(α) − αi. (6)

Proof. By definition,

P∆i
[αi + Ui(α)] = arg min

βi∈∆i

‖βi − αi − Ui(α)‖2, (7)

so we need to establish that

arg min
βi∈∆i

‖βi − αi − Ui(α)‖2 = arg max
βi∈∆i

〈βi, Ui(α)〉 −
1

2
‖βi − αi‖

2,

which follows from Proposition 2.1(ii) for C = ∆i, x = βi, c = αi, a = Ui(α) and k = 2.
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Theorem 3.1 shows that the TPD essentially is a best-response dynamic in a model of learning

subject to two types of inertia. Firstly, it preserves the inertia that all best-response dynamics

exhibit, i.e., the players do not switch to any of their best responses, but they place higher weight

to them, thus shifting their behavior towards them. Secondly, players dislike moving away from

their current strategies, the state variables in dynamic approaches to learning. The fact that they

are averse to changing their current behavior makes the TPD a conservative rule of adjustment,

and learning becomes slow.

It is much less natural to interpret the dynamic in terms of evolution in population games:

there does not seem to be a convincing explanation — perhaps conformity issues might play a

role — for why an agent for why an agent would care about the connection between his own

strategy and the distribution of strategies over his population.

As pointed out to us by Bill Sandholm, the TPD belongs to a larger family of dynamics, char-

acterized by the degree of aversion towards shifting away from the current strategy. Consider the

parametric dynamic

α̇i = P∆i
[αi +

k

2
Ui(α)] − αi, (8)

where k > 0. Comparing (3) and (8) shows that the latter is the TPD after rescaling the game’s

payoffs with a factor k/2. Such rescaling affects neither the best response correspondence, nor the

direction of the payoff vector (important for positive correlation). Hence, the parametric family

of TPD in (8), no matter how conservative rules of adjustment it imposes, has a series of nice

properties as shown in the following sections. By Proposition 2.1(ii), increasing k leads to lower

control costs: the weight placed on these costs by the perturbed payoff function is 1
k . The TPD

arises when k = 2. When k → ∞, the control cost becomes arbitrarily small and players will —

roughly speaking — put more effort into choosing a best response in the original game, with less

concern about the costs from deviating from their current strategy. On the other hand, the lower k

the more conservative the players become, since they start placing more weight on their aversion

towards change. In the limit (k → 0), players never change their current strategy.

The fact that the TPD is interpreted as a best-response dynamic with control costs does not

imply that the dynamic is susceptible to the extensive literature on (perturbed) best response

dynamics (Gilboa and Matsui, 1991; Hofbauer and Sandholm, 2002; Fudenberg and Levine, 1998):

Our status-quo bias models control costs arising due to deviations from the current state, while

the usual approaches use control cost functions which:

• are independent of the current state: they define costs in terms of deviations from a fixed

strategy, often uniform randomization (close your eyes and pick an action) as in Mattsson

and Weibull (2002), and Voorneveld (2006),
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• are often required to be steep near the boundary of the strategy space, as in Hofbauer and

Sandholm (2002).

The logit dynamic (Fudenberg and Levine, 1998), for instance, takes the form

∀i ∈ N, ∀j ∈ {1, . . . , Ji} : α̇
j
i =

exp η−1U
j
i (α)

∑
Ji
k=1 exp η−1Uk

i (α)
− α

j
i ,

for some noise parameter η > 0 and is obtained as a perturbed best-response dynamic where

each player i uses as control cost the Kullback-Leibler divergence (or relative entropy) from a

given mixed strategy βi to the mixed strategy (1/Ji, . . . , 1/Ji) assigning equal probability to all

actions. Formally, this relative entropy is defined as

Ji

∑
j=1

β
j
i ln

β
j
i

1/Ji
=

Ji

∑
j=1

β
j
i ln β

j
i + c,

where c = ln Ji is a constant and we use the convention that 0 ln 0 = 0. This transforms, in contrast

with (5), player i’s optimization problem to

max
βi∈∆i

〈βi, Ui(α)〉 − η
Ji

∑
j=1

β
j
i ln β

j
i,

where η > 0 is the weight assigned to the control cost term.

3.1. General properties

Theorem 3.2 states that the target projection dynamic satisfies a number of desirable properties

of “nice” evolutionary dynamics. Indeed, Sandholm (2005) calls a dynamic well-behaved if it

satisfies the first three properties of Theorem 3.2; he states, but does not prove, that the TPD is

well-behaved.

Theorem 3.2. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game. The TPD satisfies the following prop-

erties:

NASH STATIONARITY: The stationary points of the TPD and the game’s Nash equilibria coincide.

BASIC SOLVABILITY: For every initial state, a solution to the TPD exists, is unique, Lipschitz continuous

in the initial state, and remains inside ∆ at all times.

POSITIVE CORRELATION: Growth rates are positively correlated with payoffs: for each i ∈ N, if α̇i 6= 0,

then 〈α̇i, Ui(α)〉 > 0.
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INNOVATION: If some player is not at a stationary state and has an unused best response, then a positive

probability is assigned to this best response. Formally, for each α ∈ ∆ and i ∈ N, if α̇i 6= 0, but there

is an action a
j
i ∈ Ai with U

j
i (α) = maxk∈{1,...,Ji}

Uk
i (α) and α

j
i = 0, then α̇

j
i > 0.

Proof. NASH STATIONARITY: Let α ∈ ∆. By Proposition 2.1, Theorem 3.1, and (3), the following

chain of equivalences holds:

α is a Nash equilibrium ⇔ ∀i ∈ N : αi ∈ arg max
βi∈∆i

〈βi , Ui(α)〉

⇔ ∀i ∈ N : αi ∈ arg max
βi∈∆i

〈βi , Ui(α)〉 −
1

2
‖βi − αi‖

2

⇔ ∀i ∈ N : αi = P∆i
[αi + Ui(α)]

⇔ ∀i ∈ N : α̇i = 0.

BASIC SOLVABILITY: The target projection dynamic (3) is Lipschitz continuous. Let i ∈ N. By as-

sumption, the payoff Ui is Lipschitz continuous, say with expansion factor C > 0. By Proposition

2.2, the projection is Lipschitz continuous with expansion factor 1. Using the triangle inequality,

it follows for each α, β ∈ ∆ that

‖P[αi + Ui(α)] − αi − P[βi + Ui(β)] + βi‖ ≤ ‖P[αi + Ui(α)] − P[βi + Ui(β)]‖ + ‖αi − βi‖

≤ ‖αi + Ui(α) − βi − Ui(β)‖ + ‖αi − βi‖

≤ ‖Ui(α) − Ui(β)‖ + 2‖αi − βi‖

≤ (C + 2)‖αi − βi‖,

establishing Lipschitz continuity of the vector field in (3). Since P∆i
maps onto ∆i, it follows that

∑
Ji
j=1 α̇

j
i = 0. Moreover, if α

j
i = 0, then α̇

j
i ≥ 0. This makes ∆ forward-invariant. Together, these

properties imply (Hirsch and Smale, 1974, Ch. 8) that for every initial state, a solution exists, is

unique, Lipschitz continuous in the initial state, and remains in ∆ at all times.

POSITIVE CORRELATION: Let α ∈ ∆ and i ∈ N. Suppose α̇i = P∆i
[αi + Ui(α)] − αi 6= 0. Let

βi = P∆i
[αi + Ui(α)] 6= αi. Then, using Theorem 3.1, one obtains:

〈βi, Ui(α)〉 > 〈βi, Ui(α)〉 −
1

2
‖αi − βi‖

2

≥ 〈αi, Ui(α)〉 −
1

2
‖αi − αi‖

2

= 〈αi, Ui(α)〉,

So 〈α̇i, Ui(α)〉 = 〈βi − αi, Ui(α)〉 > 0.

INNOVATION: Assume that the premises of the innovation property hold, but that α̇
j
i ≤ 0. We

derive a contradiction. By Proposition 2.2 there is a λ ∈ R such that

P∆i
[αi + Ui(α)] = ([α1

i + U1
i (α) + λ]+, . . . , [αJi

i + U Ji
i (α) + λ]+).
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By assumption, action j is unused (α
j
i = 0) and α̇

j
i ≤ 0, so

0 ≥ α̇
j
i = [α

j
i + U

j
i (α) + λ]+ − α

j
i = [U

j
i (α) + λ]+ ≥ 0,

i.e., α̇
j
i = 0 and U

j
i (α) + λ ≤ 0. But action j is a best response: U

j
i (α) = maxk∈{1,...,Ji}

Uk
i (α).

Consequently, for every action k ∈ {1, . . . , Ji}:

α̇k
i = [αk

i + Uk
i (α) + λ]+ − αk

i ≤ [αk
i + U

j
i (α) + λ]+ − αk

i ≤ [αk
i + 0]+ − αk

i = 0.

Since ∑
Ji
k=1 α̇k

i = 0, this implies that α̇k
i = 0 for all k ∈ {1, . . . , Ji}, in contradiction with the

assumption that α̇i 6= 0.

3.2. Strict domination: mind the gap

Berger and Hofbauer (2006) show that under the Brown-von Neumann-Nash (BNN) dynamic, in-

troduced in Brown and von Neumann (1950), there are games where a strictly dominated strategy

survives. Hofbauer and Sandholm (2007) generalize this example: for each evolutionary dynamic

satisfying the properties in Theorem 3.2 — actually, they restrict attention to single-population

games — it is possible to construct a game with a strictly dominated strategy that survives along

solutions of most initial states.

As their result applies to our TPD, it is of interest to investigate whether there are additional

conditions under which such “bad” actions are wiped out. The next result shows that this is the

case if one action strictly dominates another and the “gap” between them is sufficiently large.

Proposition 3.1. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game and let i ∈ N. Suppose there are

actions aℓ
i , am

i ∈ Ai such that Uℓ
i − Um

i ≥ 2, i.e., action aℓ
i strictly dominates action am

i , and the gap

between the payoffs is at least equal to 2. Then, the probability αm
i converges to zero in the TPD.

Proof. We show that the differential equation for the probability αm
i of action am

i is given by α̇m
i =

−αm
i , because then αm

i (t) = αm
i (0)e−t → 0 as t → ∞. Let α ∈ ∆. By (3), it suffices to show that the

m-th coordinate of the projection P∆i
[αi + Ui(α)] is zero. By Proposition 2.2(ii), there is a λ ∈ R

such that its m-th and ℓ-th coordinate can be written as [αm
i + Um

i (α) + λ]+ and [αℓ
i + Uℓ

i (α) + λ]+.

Suppose, contrary to what we want to prove, that [αm
i + Um

i (α) + λ]+ > 0. Then

[αℓ
i + Uℓ

i (α) + λ]+ − [αm
i + Um

i (α) + λ]+ ≥ αℓ
i − αm

i + Uℓ
i (α) − Um

i (α) (9)

≥ αℓ
i − αm

i + 2

≥ 1,

since the difference between probabilities is bounded in absolute value by one. However, since

[αm
i + Um

i (α) + λ]+ > 0, the left-hand side of (9) is smaller than 1, a contradiction.
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Recall from the discussion on the parametric family of target projection dynamics (8) that

they coincide with the TPD after rescaling payoffs. In particular, if one action strictly dominates

another, the “gap” between them can be made arbitrarily large. This proves:

Corollary 3.1. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game and let i ∈ N. Suppose there are actions

aℓ
i , am

i ∈ Ai such that aℓ
i strictly dominates am

i . For k > 0 sufficiently large, the probability αm
i converges

to zero in the parametric TPD (8).

Also if a player has only two actions and one of them is strictly dominated, then it is eventually

eliminated:

Proposition 3.2. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game and let i ∈ N. If Ai = {a1
i , a2

i }, and

a1
i strictly dominates a2

i , the probability assigned to a2
i converges to zero in the TPD.

Proof. Let α ∈ ∆. By Proposition 2.2, there is a λ(α) ∈ R such that the target projection dynamic

for each of the two actions j = 1, 2 of population i can be rewritten as

α̇
j
i = [α

j
i + U

j
i (α) + λ(α)]+ − α

j
i (10)

Then [α1
i + U1

i (α) + λ(α)]+ > 0. Suppose, to the contrary, that

α1
i + U1

i (α) + λ(α) ≤ 0.

Since we project the two-dimensional vector onto the simplex, this implies

[α2
i + U2

i (α) + λ(α)]+ = α2
i + U2

i (α) + λ(α) = 1.

Combining these two expressions gives

α2
i − α1

i ≥ 1 + U1
i (α) − U2

i (α) > 1,

a contradiction, since the left-hand side is at most one. By continuity of the payoffs on the compact

set ∆ and strict domination, there is an ε > 0 such that U1
i (α) − U2

i (α) > ε for each α ∈ ∆.

Distinguish two cases. First, if [α2
i + U2

i (α) + λ(α)]+ = 0, then α̇2
i = −α2

i , so the probability

α2
i decreases at an exponential rate. Second, if [α2

i + U2
i (α) + λ(α)]+ > 0, combine this with the

facts that [α1
i + U1

i (α) + λ(α)]+ > 0 and that these two numbers add up to one, to deduce that

λ(α) = − 1
2(U1

i (α) + U2
i (α)). So α̇2

i = 1
2(U2

i (α) − U1
i (α)) < − 1

2 ε, i.e., the probability α2
i decreases

at a rate bounded away from zero. Hence, along any solution trajectory, the probability α2
i of the

dominated action converges to zero.
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3.3. The projection dynamic and the target projection dynamic

The projection dynamic was first developed by Nagurney and Zhang (1997) as part of the trans-

portation literature, and was later introduced to game theory by Sandholm (2006), Lahkar and

Sandholm (2008), and Sandholm et al. (2008). Let Ti = {βi ∈ R
Ji : ∑

Ji
j=1 β

j
i = 0} be the tangent

space of ∆i. Every zi ∈ Ti describes a motion between two points in ∆i. The tangent cone of ∆i at

some strategy αi ∈ ∆i is the set of feasible motions from αi towards some other strategy in ∆i, i.e.,

Ti(α) = {βi ∈ Ti : α
j
i = 0 ⇒ β

j
i ≥ 0}. Then, the projection dynamic is defined as follows

α̇P
i = PTi(α)[Ui(α)], (11)

The following proposition shows that the projection dynamic and the target projection dynamic

coincide (i) in the interior of the simplex if the target projection is orthogonal to the motion it

causes and (ii) close to completely mixed Nash equilibria.

Proposition 3.3. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game.

(i) If α ∈ int(∆) and 〈α̇i, Ui(α) − α̇i〉 = 0, with α̇ as in (3), the TPD coincides with the projection

dynamic.

(ii) If α is a completely mixed Nash equilibrium, then there is a neighborhood O of α such that the

projection dynamic and the target projection dynamic coincide for all β ∈ O.

Proof. (i) By definition the TPD solves, for each player i ∈ N, the following optimization problem:

min
βi∈∆i

‖βi − αi − Ui(α)‖2, s.t.
Ji

∑
j=1

β
j
i = 1 and β

j
i ≥ 0 for all j = 1, . . . , Ji.

It follows from the Karush-Kuhn-Tucker conditions that there are ν ∈ R and µj ≥ 0 such that for

all j = 1, . . . , Ji

β
j
i − α

j
i − U

j
i (α) + ν − µj = 0, (12)

µjβ
j
i = 0.

Summing (12) for all j, solving with respect to ν and substituting back yields

β
j
i − α

j
i − U

j
i (α) +

1

Ji

Ji

∑
j=1

U
j
i (α)− µj +

1

Ji

Ji

∑
j=1

µj = 0. (13)

We multiply by β
j
i, sum over j, and use complementary slackness (µjβ

j
i = 0):

Ji

∑
j=1

(

β
j
i

2
− α

j
i β

j
i − β

j
iU

j
i (α)

)

+
1

Ji

Ji

∑
j=1

U
j
i (α) +

1

Ji

Ji

∑
j=1

µj = 0. (14)
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We multiply now (13) by α
j
i and sum over j:

Ji

∑
j=1

(

α
j
i β

j
i − α

j
i

2
− α

j
iU

j
i (α)

)

+
1

Ji

Ji

∑
j=1

U
j
i (α) −

Ji

∑
j=1

µjα
j
i +

1

Ji

Ji

∑
j=1

µj = 0. (15)

Now subtract (14) from (15) to find

〈βi − αi, βi − αi − Ui(α)〉 =
Ji

∑
j=1

µjα
j
i .

As βi = P∆i
[αi + Ui(α)], the orthogonality assumption implies that 〈βi − αi, βi − αi − Ui(α)〉 = 0.

As µjα
j
i ≥ 0 for all j = 1, . . . , Ji and α ∈ int(∆), it follows that µj = 0 for all pure strategies

j = 1, . . . , Ji. Then, it follows from Proposition 2.2(ii) that the projection can be rewritten as

P∆i
[αi + Ui(α)] =

(

[α1
i + U1

i (α) + λ]+, . . . , [αJi
i + U

Ji
i (α) + λ]+

)

,

with α
j
i + U

j
i (α) + λ ≥ 0 for all j, since µj = 0. Hence, λ = − 1

Ji
∑

Ji
j=1 U

j
i (α), which implies that for

every i ∈ N and every j ∈ Ji the TPD becomes

α̇
j
i = U

j
i (α) −

1

Ji

Ji

∑
k=1

Uk
i (α).

The previous formula is the projection dynamic for all completely mixed strategies (Sandholm et

al., 2008), which proves the proposition.

(ii) By Nash stationarity, α̇i = 0. Since α ∈ int(∆), it follows that α
j
i > 0 for every i ∈ N and j =

1, . . . , Ji. Let i ∈ N. By Proposition 2.2(ii), there is a unique λ(α) such that α
j
i + U

j
i (α) + λ(α) > 0

for all j = 1, . . . , Ji. By continuity of the projection, there is a neighborhood O of α such that

β
j
i + U

j
i (β) + λ(β) > 0, for every j and β ∈ O. As above, it follows that

λ(β) = −
1

Ji

Ji

∑
j=1

U
j
i (β),

reducing the TPD to the projection dynamic on O.

4. Special classes of games

In this section we study the properties of the TPD in some special classes of games.

4.1. Stable games

Sandholm et al. (2008) prove a number of stability results for potential and stable games under

the projection dynamic. Stable games (Hofbauer and Sandholm, 2008) are a family of normal
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form games characterized by the following condition:

〈αi − βi, Ui(α) − Ui(β)〉 ≤ 0, (16)

for every αi, βi ∈ ∆i and for all i ∈ N. The game is null (strictly) stable if (16) holds with equality

(strict inequality).

Proposition 4.1. Let (N, (Ai)i∈N , (Ui)i∈N) be a normal form game and let α be a completely mixed Nash

equilibrium.

(i) If the game is stable then α is Lyapunov stable under the TPD.

(ii) If the game is strictly stable then α is asymptotically stable under the TPD.

(iii) If the game is null stable then there is a neighborhood of α where the squared Euclidean distance to α,

i.e., the function β 7→ ‖β − α‖2, defines a constant of motion under the TPD.

Proof. By Proposition 3.3(ii), there is a neighborhood O of α where the projection dynamic coin-

cides with the target projection dynamic for all players. Let ε > 0 be such that

Oε := {β ∈ ∆ : ‖β − α‖2 ≤ ε} ⊆ O.

Sandholm et al. (2008) show that in the three cases of our proposition the function L : ∆ →

R with L(β) := ‖β − α‖2 is (i) a Lyapunov function, (ii) a strict Lyapunov function, and (iii)

defines a constant motion around α under the projection dynamic. Since Oε ⊆ O, every trajectory

starting in Oǫ will remain in it forever under the projection dynamic, and therefore under the

target projection dynamic, completing the proof.

4.2. Zero-sum games

A very interesting and widely explored class of games is the zero-sum games. We say that a

normal form game is zero-sum if ∑i∈N ui(a) = 0 for every a ∈ A. Hofbauer and Sandholm

(2008) establish that zero-sum games are null stable. By Proposition 4.1(iii), every trajectory of

the TPD that gets sufficiently close to a completely mixed equilibrium in two-players zero-sum

games forms a closed cyclical orbit around it.

Corollary 4.1. Let (N, (Ai)i∈N, (Ui)i∈N) be a two-player normal form zero-sum game. If α is a completely

mixed Nash equilibrium, there is a neighborhood O of α on which the the TPD forms a constant of motion

around α.

That is, if β0 ∈ O and β belongs to the trajectory of the (unique) solution of (3) with initial value

β0, then ‖β − α‖ = ‖β0 − α‖. Typical examples include the matching pennies and the rock-paper-

scissors games.
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4.3. Games with strict Nash equilibria

Recall that in finite strategic games a Nash equilibrium is strict if each player chooses the unique

best reply, i.e., α ∈ ∆ is a strict Nash equilibrium if 〈αi, Ui(α)〉 > 〈βi , Ui(α)〉 for all β ∈ ∆ and all

i ∈ N. Consequently, strict Nash equilibria are equilibria in pure strategies. This follows from

the fact that a mixed strategy αi is a best response to α if and only if all actions assigned positive

probability by αi are best responses to α, implying that i is indifferent between these actions, and

therefore the necessary and sufficient condition for the strict equilibrium is violated.

Proposition 4.2. Let (N, (Ai)i∈N, (Ui)i∈N) be a normal form game. If α is a strict Nash equilibrium, it

is asymptotically stable under the TPD.

Proof. Let α be a strict Nash equilibrium. Since α must be in pure strategies, without loss of

generality, each i ∈ N plays his first action: αi = a1
i . By definition, for each i ∈ N and j ∈

{2, . . . , Ji}: U1
i (α) > U

j
i (α), so that (α1

i + U1
i (α)) − (α

j
i + U

j
i (α)) = 1 + U1

i (α) − U
j
i (α) > 1. By

continuity, there is a neighborhood O of α such that for all β ∈ O, i ∈ N, and j ∈ {2, . . . , Ji}:

(β1
i + U1

i (β)) − (β
j
i + U

j
i (β)) ≥ 1.

For all β ∈ O and i ∈ N, Remark 2.1 implies that P∆i
(βi + Ui(β)) = αi; so β̇i = αi − βi. Hence,

the function L : O → R with L(β) := ∑i∈N ‖βi − αi‖
2 is a Lyapunov function: It is non-negative,

zero only at α, and if β ∈ O \ {α}:

L̇ = 2 ∑
i∈N

〈βi − αi, β̇i〉 = 2 ∑
i∈N

〈βi − αi, αi − βi〉 = −2 ∑
i∈N

‖βi − αi‖
2

< 0.

Given the existence of the Lyapunov function L, the equilibrium α is asymptotically stable (Hirsch

and Smale, 1974, Ch. 9).

4.4. Games with evolutionarily stable strategies

We focus on symmetric two-player normal form games. A two player game is called symmetric

if A1 = A2 = A and u1(a1, a2) = u2(a1, a2) = u(a1, a2) for all a1, a2 ∈ A. We say that (α, α) is

an evolutionarily stable strategy (ESS) of a symmetric two-player normal form game (Maynard

Smith, 1982; Weibull, 1995; Fudenberg and Levine, 1998) if for all β 6= α:

(a) 〈α, U(α)〉 > 〈β, U(α)〉, or

(b) 〈α, U(α)〉 = 〈β, U(α)〉 and 〈α, U(β)〉 > 〈β, U(β)〉.

That is, a strategy is evolutionarily stable if it is robust to behavioral mutations: small mutations

receive a strictly lower post-entry payoff than the incumbent strategy. ESS is a refinement of Nash
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equilibrium, so all ESS are rest points of every dynamic that satisfies Nash stationarity. Taylor and

Jonker (1978), and Hofbauer et al. (1979) show that every ESS is asymptotically stable under the

replicator dynamic. However, a similar result cannot be established for the TPD. Instead we

provide some partial stability results.

Games with a completely mixed evolutionary stable strategy are strictly stable (Hofbauer and

Sandholm, 2008). Proposition 4.1(ii) thus implies:

Corollary 4.2. Let (N, (Ai)i∈N , (Ui)i∈N) be a symmetric two-player normal form game and let α be a

completely mixed ESS. Then, it is asymptotically stable in the TPD.

If in addition we restrict players to choose between only two actions we can extend the previous

result to all ESS:

Proposition 4.3. Let (N, (Ai)i∈N , (Ui)i∈N) be a symmetric 2× 2 normal form game and let α be an ESS.

Then, it is asymptotically stable in the TPD.

Proof. For convenience, denote the strategy space by ∆ = {β ∈ R
2
+ : β1 + β2 = 1}. Let A =

{a1, a2} and let α ∈ ∆ be an ESS. If α = (α1, α2) is completely mixed, apply Corollary 4.2. If not,

assume without loss of generality that α = e1, where e1 = (1, 0), i.e., the pure strategy a1 is an

ESS.

If U1(e1) > U2(e1) then it follows from convexity of the payoffs that

〈e1, U(e1)〉 = U1(e1) > β1U1(e1) + β2U2(e1) = 〈β, U(e1)〉,

for all β = (β1, β2) ∈ ∆. Hence, from Proposition 4.2 it follows that e1 is asymptotically stable in

the TPD.

Suppose now that U1(e1) = U2(e1). Since e1 is an ESS, it is also a Nash equilibrium, and

therefore due to Theorem 3.2 it is a rest point. This implies that P∆[ei
1 + Ui(e1)] = ei

1, which yields

P∆[1 + U1(e1)] = 1 > 0 for i = 1. It follows from continuity that there is a neighborhood O of

e1 such that P∆[β1 + U1(β)] > 0 for all β ∈ O. From Proposition 2.2(ii) it follows that there is

λ(β) ∈ R such that P∆[β1 + U1(β)] = [β1 + U1(β) + λ(β)]+ > 0, implying that P∆[β1 + U1(β)] =

β1 + U1(β) + λ(β), for all β ∈ O. Hence,

β̇1 = U1(β) + λ(β), (17)

for all β ∈ O. Now, we consider two cases:

CASE 1: Let [β2 + U2(β) + λ(β)]+ > 0, which implies again due to Proposition 2.2(ii) that λ(β) =
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− 1
2(U1(β) + U2(β)). Hence, it follows from Equation (17) that

β̇1 = U1(β) −
1

2
(U1(β) + U2(β))

=
1

2
(U1(β) − U2(β))

=
1

2
β1

(

〈e1, U1(e1)〉 − 〈e2, U2(e1)〉
)

+
1

2
β2

(

〈e1, U1(e2)〉 − 〈e2, U2(e2)〉
)

=
1

2
β2

(

〈e1, U1(e2)〉 − 〈e2, U2(e2)〉
)

> 0, (18)

where e2 = (0, 1) denotes the pure strategy a2.

CASE 2: Let [β2 + U2(β) + λ(β)]+ = 0, which implies again due to Proposition 2.2(ii) that λ(β) =

1 − β1 − U1(β). Substituting into Equation (17) yields

β̇1 = 1 − β1 > 0. (19)

Consider now L(β) = 1 − β1 for β ∈ O, which is a Lyapunov function: it is non-negative,

equal to zero only at e1, and for all β ∈ O \ {e1}

L̇ = −β̇1 < 0,

which follows from (18) and (19) and completes the proof.

Appendix

Proof of Proposition 2.1. (i) [(a) ⇒ (b)] Assume (a) holds. Since ‖c − c‖ = 0, it follows, for each x ∈ C,

that

〈a, c〉 −
1

k
‖c − c‖2 = 〈a, c〉 ≥ 〈a, x〉 ≥ 〈a, x〉 −

1

k
‖x − c‖2,

so (b) holds.

[(b) ⇒ (a)] Assume (b) holds. Let x ∈ C and λ ∈ (0, 1). By convexity, λx + (1−λ)c ∈ C. Since ‖c− c‖ = 0,

it follows that

〈a, c〉 ≥ 〈a, λx + (1 − λ)c〉 −
1

k
‖(λx + (1 − λ)c) − c‖2

= λ〈a, x〉 + (1 − λ)〈a, c〉 −
λ2

k
‖x − c‖2.

Rearrange terms and divide by λ > 0 to obtain that 〈a, c〉 ≥ 〈a, x〉 − λ
k ‖x − c‖2. Since λ ∈ (0, 1) is arbitrary,

let λ approach zero to establish (a).

(ii) Maximizing the function x 7→ 〈a, x〉 − 1
k‖x − c‖2 is equivalent with minimizing x 7→ 1

k‖x − c‖2 − 〈a, x〉.

It therefore suffices to show that the latter function is a positive affine transformation of x 7→ ‖x − c − k
2 a‖2.
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Using the linearity and symmetry properties of the inner product, we find

‖x − c −
k

2
a‖2 = 〈x − c −

k

2
a, x − c −

k

2
a〉

= 〈x − c, x − c〉 − 2〈
k

2
a, x〉 + 2〈c,

k

2
a〉 + 〈

k

2
a,

k

2
a〉

= ‖x − c‖2 − k〈a, x〉 + k〈c, a〉 +
k2

4
‖a‖,

which completes the proof, since the final two terms are independent of x, and ‖x − c‖2 − k〈a, x〉 is a simple

rescaling of 1
k‖x − c‖2 − 〈a, x〉.

Proof of Proposition 2.2. (i) Recall from the Projection Theorem (see, for instance, Luenberger, 1969, p.

69) that for every z ∈ R
n, P(z) is characterized by 〈z − P(z), w − P(z)〉 ≤ 0 for all w ∈ ∆n. In particular, for

all x, y ∈ R
n:

〈x − P(x), P(y) − P(x)〉 ≤ 0 and 〈y − P(y), P(x)− P(y)〉 ≤ 0.

Write 〈y − P(y), P(x) − P(y)〉 = 〈P(y) − y, P(y) − P(x)〉, add the two inequalities, and use Cauchy-

Schwarz to establish

0 ≥ 〈x − P(x) + P(y) − y, P(y) − P(x)〉

= ‖P(y) − P(x)‖2 − 〈y − x, P(y) − P(x)〉

≥ ‖P(y) − P(x)‖2 − ‖y − x‖ ‖P(y) − P(x)‖.

Conclude that ‖P(y) − P(x)‖ ≤ ‖y − x‖, i.e., P is Lipschitz continuous with expansion factor 1.

(ii) Let x ∈ R
n. The function T : R → R defined for each λ ∈ R by T(λ) = ∑

n
i=1[xi + λ]+ is the composition

of continuous functions and therefore continuous itself. Let m = max{x1, . . . , xn}. Then T(λ) = 0 for all

λ ∈ (−∞,−m] and T is strictly increasing on [−m, ∞), with T(λ) → ∞ as λ → ∞. By the Intermediate

Value Theorem, there is a unique λ(x) ∈ [−m, ∞) such that T(λ(x)) = 1.

By definition, P(x) is the unique solution to miny∈∆n
1
2 ∑

n
i=1(yi − xi)

2. This is a convex quadratic opti-

mization problem with linear constraints, so the Karush-Kuhn-Tucker conditions are necessary and suffi-

cient to characterize the minimum location: y∗ ∈ ∆n solves the problem if and only if there exist Lagrange

multipliers µi ≥ 0 associated with the inequality constraints yi ≥ 0 and ν ∈ R associated with the equality

constraint ∑
n
i=1 yi = 1 such that for each i = 1, . . . , n:

y∗i − xi − µi + ν = 0, (20)

µiy
∗
i = 0. (21)

Condition (20) is the first order condition obtained from differentiating the Lagrangian

(y, µ1, . . . , µn, ν) 7→
1

2

n

∑
i=1

(yi − xi)
2 −

n

∑
i=1

µiyi + ν

(

n

∑
i=1

yi − 1

)

with respect to yi and condition (21) is the complementary slackness condition. It is now easy to see that

y∗ := ([x1 + λ(x)]+, . . . , [xn + λ(x)]+) solves the minimization problem: set µi = 0 if [xi + λ(x)]+ > 0,
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µi = −xi − λ(x) ≥ 0 if [xi + λ(x)]+ ≤ 0, and ν = −λ(x). Substitution in (20) and (21) shows that these

necessary and sufficient conditions are satisfied.
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